\begin{array}{|c|c|c|c|}
\hline
\text{New function}(c>0,\lambda>1)& \text{Change of coordinate}& \text{Geometry of transformation}
\\ \hline
f(x) +c & (a, b) \mapsto(a,b+c)& \text{ shift up by} c\\ \hline
f(x) -c & (a, b) \mapsto(a,b-c)&\text{shift down by} c\\ \hline
\lambda f(x) & (a, b) \mapsto(a,\lambda b)&\text{vertical expansion by } \lambda\\ \hline \frac{1}{\lambda}f(x) & (a, b) \mapsto(a, \frac{1}{\lambda}b)&\text{vertical contraction by } \lambda \\\hline -f(x) &(a, b) \mapsto (a, -b) &\text{reflexion about $x$-axis}\\ \hline
\end{array}
Example:
$\boxed{\color{red}{f(x) =x^2}}$

$\boxed{\color{green}{f(x) =x^2+2}}(\text{ shifted upward $2$ units}) $

$\boxed{\color{black}{f(x)=x^2-2}}(\text{ shifted downward $2$ units}) $

$\boxed{\color{goldenrod}{f(x) =3x^2}}(\text{ vertically expanded $3$ units})
$

$\boxed{\color{blue}{f(x) =\frac{1}{3}x^2}} (\text{vertically contracted $\frac{1}{3}$ units}) $

$\boxed{\color{cyan}{f(x) =-x^2}} (\text{reflected about $x$- axis}) $

\begin{array}{|c|c|c|c|}
\hline
\text{New function}(c>0,\lambda>1)& \text{Change of coordinate}& \text{Geometry of transformation}
\\ \hline
f(x+c) & (a, b) \mapsto(a-c,b)& \text{ shift left by} c\\ \hline
f(x-c) & (a, b) \mapsto(a+c,b)&\text{shift right by} c\\ \hline
f(\lambda x) & (a, b) \mapsto(\frac{1}{\lambda}a,b)&\text{horizontal contraction by } \frac{1}{\lambda} \\ \hline f(\frac{1}{\lambda}x) & (a, b) \mapsto(\lambda a,b)&\text{horizontal expansion by } \lambda \\\hline f(-x) &(a, b) \mapsto (-a, b) &\text{reflexion about $y$-axis}\\\hline
\end{array}
Example:
$\boxed{\color{red}{f(x) =x^2}}$

$\boxed{\color{green}{f(x) =(x+2)^2}}(\text{ shifted left $2$ units}) $

$\boxed{\color{black}{f(x)=(x-2)^2}}(\text{ shifted right $2$ units}) $

$\boxed{\color{goldenrod}{f(x) =(3x)^2}}(\text{horizontally contracted $\frac{1}{3}$ units})$

$\boxed{\color{blue}{f(x) =(\frac{1}{3}x)^2}} (\text{horizontally expanded ${3}$ units}) $

$\boxed{\color{cyan}{f(x) =(-x) ^2}} (\text{reflected about $y$- axis}) $

$|f|=|\space |\circ f$
$|f(x)| =\begin{cases}f(x)& f(x) \ge 0\\-f(x)& f(x) <0\end{cases}$
Hence $|f|$ is same as $f$ on the upper half plane and the lower half plane $f$ is $-f$ .
In other words $|f|=\max\{f, -f\}$
To draw the graph of $|f|$ , first draw the graph of $f$ and the leave the portion of the graph as it is on the upper half plane and then reflect the portion of the graph of the lower half plane with respect to the $x$-axis.
$f(|x|) =(f\circ|\space |)(x) $
$f(|x|) =\begin{cases}f(x)& x\ge 0\\f(-x) & x <0\end{cases}$
Hence $f(|x|)$ is same as $f(x)$ on the right half plane and on the left half plane $f(|x|)$ is the reflection of $f(x)$ about $y$-axis.
To draw the graph of $f\circ |x|$ , first draw the graph of $f$ and the leave the portion of the graph as it is on the right half plane and then reflect the portion of the graph in the left half plane with respect to the $y$-axis.
Note: For a even function $f$, since $f(-x) =f(x) $ then $f(|x|) =f(x) $.Hence we won't see the difference between the graph of the function $f$ and $f\circ |\space |$.
Example:
$\boxed{\color{red}{f(x) =-x^3}}$

$\boxed{\color{blue}{|f(x)| =|-x^3|}}$

$\boxed{\color{green}{|f(x)| =-|x|^3}}$

$\boxed{\color{black}{|y|=f(x)}}$
$y =\begin{cases}f(x)& y\ge 0\\-f(x) & y <0\end{cases}$
Hence the graph of the function $|y|=f(x) $ is same as the graph of $y=f(x)$ on the upper half plane and on the lower half plane the graph of $|y|=f(x) $ is same as the graph of $y=-f(x) $.
To draw the graph of $|y|=f(x) $, first draw the graph of $y=f(x)$.Then left the graph on the upper half plane as it is and then reflect the graph of the upper half plane about $x$-axis.
Example:
$\boxed{\color{red}{f(x) =4-x^2}}$
The graph of $y=f(x)$

$\boxed{\color{green}{|y|=f(x)}}$
