Questions tagged [inverse-trigonometric-functions]

For questions related to inverse circular trigonometric functions

The inverse (circular) trigonometric functions are the inverse functions of the circular trigonometric functions: sine($\sin$), cosine($\cos$), tangent($\tan$), cotangent($\cot$), secant($\sec$) and cosecant($\csc$) under suitably restricted domains.

They are denoted by a superscript of $-1$ on the corresponding trigonometric functions or by a prefix $\text{arc-}$ before its name. Example: the inverse sine function can be denoted as $\sin^{-1}x$ or $\arcsin x$.

The intuition for the prefix $\text{arc-}$ is that the inverse trigonometric function$\text{(say}$ $f^{-1}(x)$$\text{)}$ of a value $x$ yields the numerical value of the length of the arc in the unit circle whose $f$ value is $x$. Example, the inverse tangent of $1$ is $\frac{\pi}4$ means that the tangent of the numerical value of an arc of length $\frac{\pi}4$ in the unit circle would be $1$.

Their domains and ranges(principal value branches) are as follows:

$$\sin^{-1}x:[-1,1]\to\left[\frac{-\pi}2,\frac{\pi}2\right]$$ $$\cos^{-1}x:[-1,1]\to[0,\pi]$$ $$\tan^{-1}x:\mathbb R\to\left(\frac{-\pi}2,\frac{\pi}2\right)$$ $$\cot^{-1}x:\mathbb R\to\left(0,\pi\right)$$ $$\csc^{-1}x:\mathbb R-[-1,1]\to\left[\frac{-\pi}2,\frac{\pi}2\right]-\text{{0}}$$ $$\sec^{-1}x:\mathbb R-[-1,1]\to[0,\pi]-\left\{\frac{\pi}2\right\}$$

Some basic identities:

$$\sin^{-1}x+\cos^{-1}x=\frac{\pi}2\ \forall\ x\in[-1,1]$$ $$\tan^{-1}x+\cot^{-1}x=\frac{\pi}2\ \forall\ x\in\mathbb R$$ $$\sec^{-1}x+\csc^{-1}x=\frac{\pi}2\ \forall\ x\in\mathbb R-[-1,1]$$ $$\csc^{-1}x=\sin^{-1}\frac1{x}\ \forall\ x\in\mathbb R-[-1,1]$$ $$\sec^{-1}x=\cos^{-1}\frac1{x}\ \forall\ x\in\mathbb R-[-1,1]$$ $$\cot^{-1}x=\begin{cases}\tan^{-1}\frac1{x}\ \forall\ x>0\\ \tan^{-1}\frac1{x}+\pi\ \forall\ x<0\end{cases}$$

In complex analysis, their domains are extended to $\mathbb C$. In this case, they can be defined in terms of their hyperbolic analogues:

$$\sin^{-1}x=-i\sinh^{-1}ix$$ $$\cos^{-1}x=i(\text{sgn}(x^2-1))\cosh^{-1}x$$ $$\tan^{-1}x=-i\tanh^{-1}ix$$

Their derivatives are particularly useful in integrating some algebraic functions(these formulae are applicable $\forall\ x\in\mathbb C$):

$$\frac{\mathrm d}{\mathrm dx}\sin^{-1}x=\frac1{\sqrt{1-x^2}}$$ $$\frac{\mathrm d}{\mathrm dx}\cos^{-1}x=\frac{-1}{\sqrt{1-x^2}}$$ $$\frac{\mathrm d}{\mathrm dx}\tan^{-1}x=\frac1{1+x^2}$$ $$\frac{\mathrm d}{\mathrm dx}\cot^{-1}x=\frac{-1}{1+x^2}$$ $$\frac{\mathrm d}{\mathrm dx}\sec^{-1}x=\frac1{x^2\sqrt{1-\frac1{x^2}}}$$ $$\frac{\mathrm d}{\mathrm dx}\csc^{-1}x=\frac{-1}{x^2\sqrt{1-\frac1{x^2}}}$$

Reference: Wikipedia

65 questions
16
votes
2 answers

Crazy integral with nested radicals and inverse sines

Recently a friend who is writing a book on integrals added this problem to his book: $$\int_{0}^{1}\arcsin{\sqrt{1-\sqrt{x}}}\ dx=\frac{3\pi}{16}$$ After a while, when trying to generalize, I was able to find the following…
15
votes
2 answers

How to visualize $\cosh(\sinh^{-1}(x))$ or $\sinh(\cosh^{-1}(x))$?

In order to compute $\cos(\sin^{-1}(x))$ or $\sin(\cos^{-1}(x))$, all one has to do is draw an appropriate triangle to find that $$\cos(\sin^{-1}(x))=\sqrt{1-x^2}=\sin(\cos^{-1}(x)).$$ Using algebra, one can find that…
12
votes
2 answers

Infinite Arcsin Summation

I am trying to evaluate the infinite sum: $$\ \sum_{n=0}^{\infty} \sin^{-1} \left( \frac{2 (n^2 + n + 1)}{(n^2 + 1) (n^2 + 2n + 2)} \right) \ = \pi $$ I suspect that the terms inside the arcsin function might allow for a telescoping sum, but I am…
9
votes
4 answers

How to prove the two answers to an integral are equivalent

I'm trying to do the integral: $$\int{\frac{1}{\sqrt{e^{-2x}-1}}}dx$$ So I try two ways to do it, the first method I used is to multiply $e^x$ on both sides…
9
votes
5 answers

Maclaurin series for $\arctan^{2}(x)$

I have a question here that requires me to find the Maclaurin series expansion of $\arctan^{2}(x)$. Now I know how to find it for $\arctan(x)$, by taking the derivative, expanding it into a series, and integrating back (given x is in the interval…
8
votes
1 answer

Arctan Approximation $\arctan(x) \approx \frac{\pi}{2 (1 + x^k)}$ where $k = -\log_3 4$ and $x>0$

I came across the following approximation for $\arctan(x)$ while working with functional equations: $\arctan(x) \approx \frac{\pi}{2 (1 + x^k)}$ where $k = -\log_3 4$ and $x>0$ It satisfies the limit conditions, and numerically it stays within about…
7
votes
1 answer

Solving inverse trigonometric equation involving arccotangent.

$\tan^{-1}(x+1)+\cot^{-1}(\frac{1}{x-1})=\tan^{-1}(\frac{8}{31})$ One thing to clear is that the range of arccotangent is $(0,\pi)$. I am so sad because I can't use Wolfram to cross check my answers. I tried to solve the problem and got two values…
6
votes
2 answers

Maximize $\sum_{i = 1}^n (\arccos(x_i) - \arccos(y_i))$ subject to $x_1 + \dots + x_n = y_1 + \dots + y_n$

I want to find the maximum (or a relatively tight upper bound on the maximum) of $$\sum_{i = 1}^n \Big(\arccos(x_i) - \arccos(y_i)\Big)$$ subject to the constraint that $x_1 + \dots + x_n = y_1 + \dots + y_n$ (of course $x_i, y_i \in [-1, 1],…
6
votes
1 answer

Evaluate: $\int{\cos{\left(2\cot^{-1}\sqrt{\frac{1-x}{1+x}}\right)}dx}$

Evaluate: $$\int{\cos{\left(2\cot^{-1}\sqrt{\frac{1-x}{1+x}}\right)}dx}.$$ Method 1 Put $x=\cos(2\theta)$; then $\mathrm dx=-2\sin(2\theta)\,\mathrm d\theta$ $$\begin{align*} I&= \int\cos(2\cot^{-1}\tan\theta)(-2\sin(2\theta))\,\mathrm d\theta\\ &=…
Daksh
  • 339
  • 1
  • 10
6
votes
5 answers

Solve the equation $\arcsin\bigg(\dfrac{x+1}{\sqrt{x^2+2x+2}}\bigg)-\arcsin\bigg(\dfrac{x}{\sqrt{x^2+1}}\bigg)=\dfrac{\pi}{4}$

Solve the equation $$\arcsin\bigg(\dfrac{x+1}{\sqrt{x^2+2x+2}}\bigg)-\arcsin\bigg(\dfrac{x}{\sqrt{x^2+1}}\bigg)=\dfrac{\pi}{4}$$ My solution: I converted this equation in terms of $\arctan$ and applied tangent to both sides, and I got my answer as…
5
votes
0 answers

Roots of $\small15\arctan^2(x)-10\arctan^2(2x)-2\arctan^2(3x)+3\arctan^2(7x)=0$

The equation $$\small15\arctan^2(x)-10\arctan^2(2x)-2\arctan^2(3x)+3\arctan^2(7x)=0\tag{1}$$ has real roots $\{-1, -\rho, 0, \rho, 1\},$ where $\rho\approx0.5354195932557...$ Is $\rho$ an algebraic number? Does it have any closed form? The equation…
5
votes
1 answer

If $3\sin^{-1}\left(\frac{2x}{1+x^2}\right)-4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)+2\tan^{-1}\left(\frac{2x}{1-x^2}\right)=\fracπ3$, then find $x$

The following question is taken from JEE practice set. If $3\sin^{-1}\left(\frac{2x}{1+x^2}\right)-4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)+2\tan^{-1}\left(\frac{2x}{1-x^2}\right)=\fracπ3$, where $|x|<1$, then find…
4
votes
1 answer

Help in ensuring divergence of electric field of a cubic body in free space is zero after finding the electric field

MAIN OBJECTIVE : To find the electric field due to a cubic body at free space points (except few) and then ensure that the divergence of its electric field in free space is zero GIVEN : Charge density is unity at all points inside the cubic body AND…
4
votes
2 answers

Solving an exotic trigonometric function or a sextic

I'm an aerospace engineering student and I've been doing some analytical work on an interdisciplinary problem involving orbital mechanics and electromagnetism. In the final part of my work, I ended up with those four equations below $$ e \cos\left(f…
3
votes
3 answers

Solving $\sin(\pi\cos\theta)=\cos(π\sin\theta)$

I want to find general solutions ($\theta$ is real) to the equation $$\sin(\pi\cos\theta)=\cos(π\sin\theta).$$ What I tried (didn't lead to much): $$\cos(\pi\sin\theta)=\cos(π/2-\pi\cos\theta).$$ I eventually found $\theta,$ but it does not match…
1
2 3 4 5