4

MAIN OBJECTIVE : To find the electric field due to a cubic body at free space points (except few) and then ensure that the divergence of its electric field in free space is zero

GIVEN : Charge density is unity at all points inside the cubic body AND the vertices of cube are $(-20,-20,-20)$,$(-20,-20,20)$,$(-20,20,-20)$,$(-20,20,20)$,$(20,-20,-20)$,$(20,-20,20)$,$(20,20,-20)$,$(20,20,20)$

For any $(a,b,c)$ not on cube such that $a \neq 20, a \neq -20, b \neq 20, b \neq -20, c \neq 20, c \neq -20$

Part I : Finding $x$-component of electric field

\begin{align} E_{x}(a,b,c)&=\int_{cube} \dfrac{a-x}{[(a-x)^2+(b-y)^2+(c-z)^2]^{3/2}}\ dV\\ &=\int^{20}_{-20} \int^{20}_{-20} \int^{20}_{-20} \dfrac{a-x}{[(a-x)^2+(b-y)^2+(c-z)^2]^{3/2}}\ dx\ dy\ dz\\ &=\int^{20}_{-20} \int^{20}_{-20} \left[ \dfrac{1}{\sqrt{(a-x)^2+(b-y)^2+(c-z)^2}} \right]^{20}_{-20} dy\ dz\\ &=\int^{20}_{-20} \int^{20}_{-20} \left[ \dfrac{1}{\sqrt{(a-20)^2+(b-y)^2+(c-z)^2}}-\dfrac{1}{\sqrt{(a+20)^2+(b-y)^2+(c-z)^2}} \right] dy\ dz\\ &=\int^{20}_{-20}\left[ \ln \left| \sqrt{(a-20)^2+(b-y)^2+(c-z)^2}+y-b\right| - \ln \left|\sqrt{(a+20)^2+(b-y)^2+(c-z)^2}+y-b \right| \right]^{20}_{-20} dz\\ &=\int^{20}_{-20} \left[ \ln \left| \sqrt{(a-20)^2+(b-20)^2+(c-z)^2}+20-b\right| - \ln \left|\sqrt{(a+20)^2+(b-20)^2+(c-z)^2}+20-b \right|\\ - \ln \left|\sqrt{(a-20)^2+(b+20)^2+(c-z)^2}-20-b \right| + \ln \left|\sqrt{(a+20)^2+(b+20)^2+(c-z)^2}-20-b \right| \right]\ dz\\ &=\int^{20}_{-20} \left[ \ln \left| \sqrt{(a-20)^2+(b-20)^2+(c-z)^2}-(b-20)\right| - \ln \left|\sqrt{(a+20)^2+(b-20)^2+(c-z)^2}-(b-20) \right|\\ - \ln \left|\sqrt{(a-20)^2+(b+20)^2+(c-z)^2}-(b+20) \right| + \ln \left|\sqrt{(a+20)^2+(b+20)^2+(c-z)^2}-(b+20) \right| \right]\ dz\\ \end{align}

We see that there are four terms in the integrand of integral w.r.t $z$. First we consider only the first term. According to this integral calculator, its integral w.r.t $z$ along with limits is:

\begin{align} \text{Term 1} &=\left[ (b-20) \left( \ln{\left| \sqrt{(a - 20)^{2} + (b - 20)^{2} + (c - z)^{2} } - \sqrt{(a - 20)^{2} + (b - 20)^{2} } + (c-z) \right|}\\ -\ln{\left| \sqrt{(a - 20)^{2} + (b - 20)^{2} + (c - z)^{2} } - \sqrt{(a - 20)^{2} + (b - 20)^{2} } - (c-z) \right|} \right)\\ -(c-z) \ln\left|\sqrt{(a - 20)^{2} + (b - 20)^{2} + (c - z)^{2}} - (b - 20) \right|\\ + 2 (a - 20) \tan^{-1} \left( \frac{a-20}{c-z}\ .\ \frac{\sqrt{(a - 20)^{2} + (b - 20)^{2}} - \sqrt{(a - 20)^{2} + (b - 20)^{2} + (c - z)^{2}}}{\sqrt{(a - 20)^{2} + (b - 20)^{2}} - (b-20)} \right)\\ - z \right]^{20}_{-20} \end{align}

EDITED FROM HERE

The last term $-z$ gets cancelled off when applying limits. Therefore the integral w.r.t $z$ of Term $1$ computed for upper limit $z=20$ can be written as the following (call equation $1$):

\begin{align} E_{x(1,2,3)} &=(b-20) \left( \ln{\left| \sqrt{(a - 20)^{2} + (b - 20)^{2} + (c - 20)^{2} } - \sqrt{(a - 20)^{2} + (b - 20)^{2} } + (c-20) \right|}\\ -\ln{\left| \sqrt{(a - 20)^{2} + (b - 20)^{2} + (c - 20)^{2} } - \sqrt{(a - 20)^{2} + (b - 20)^{2} } - (c-20) \right|} \right)\\ &-(c-20) \ln\left|\sqrt{(a - 20)^{2} + (b - 20)^{2} + (c - 20)^{2}} - (b - 20) \right|\\ &+ 2 (a - 20) \tan^{-1} \left( \frac{a-20}{c-20}\ .\ \frac{\sqrt{(a - 20)^{2} + (b - 20)^{2}} - \sqrt{(a - 20)^{2} + (b - 20)^{2} + (c - 20)^{2}}}{\sqrt{(a - 20)^{2} + (b - 20)^{2}} - (b-20)} \right) \tag1 \end{align}

By replacing:

$a-20$ with $a+20$ in equation $(1)$

and/or

$b-20$ with $b+20$ in equation $(1)$

and/or

$c-20$ with $c+20$ in equation $(1)$,

we see that there are $7$ more variations of $a \pm 20$,$b \pm 20$,$c \pm 20$

a b c
a-20 b-20 c-20
a-20 b-20 c+20
a-20 b+20 c-20
a-20 b+20 c+20
a+20 b-20 c-20
a+20 b-20 c+20
a+20 b+20 c-20
a+20 b+20 c+20

Thus $3$ terms for each column make $E_x$ having $3 \times 8 = 24$ terms.

Part II : Finding divergence of first three terms of electric field

Let :

$\xi=a-20$

$\eta=b-20$

$\zeta=c-20$

As shown in the answer below by mathlove, $$\dfrac{\partial E_{x(1,2,3)}}{\partial a}=2\tan^{-1}\left( \dfrac{A}{C} \cdot \dfrac{E-D}{E-B} \right)$$

Therefore, for $\dfrac{\partial E_{x}}{\partial a}$, there is one term corresponding to each column in the above table. Therefore $\dfrac{\partial E_{x}}{\partial a}$ has $1 \times 8 = 8$ terms


Similarly, by repeating the steps from beginning in an analogous way, we find $\dfrac{\partial E_{y}}{\partial b}$ and $\dfrac{\partial E_{z}}{\partial c}$ each have 8 terms.

Thus $\vec{\nabla}.\vec{E}=\dfrac{\partial E_{x}}{\partial a}+\dfrac{\partial E_{y}}{\partial b}+\dfrac{\partial E_{z}}{\partial c}$ has $8+8+8 = 24$ terms.

How shall I proceed in getting the sum of entire $24$ terms as zero ?

Joe
  • 599

1 Answers1

2

Let $$A:=\xi,\ B:=\eta,\ C:=\zeta$$ $$D:=\sqrt{A^2+B^2+C^2},\ E:=\sqrt{A^2+B^2}$$

I think your $\dfrac{\partial E_{x(1,2,3)}}{\partial a}$ can be written as $$\dfrac{\partial E_{x(1,2,3)}}{\partial a}=2\tan^{-1} \left( \dfrac{A}{C} \cdot \dfrac{E-D}{E-B} \right)$$


Your $\dfrac{\partial E_{x(1,2,3)}}{\partial a}$ can be written as $$\dfrac{\partial E_{x(1,2,3)}}{\partial a}=\underbrace{AB \left( \dfrac{1}{D-E+C}-\dfrac{1}{D-E-C} \right) \left( \dfrac{1}{D} - \dfrac{1}{E} \right)}_{F}$$ $$- \dfrac{AC}{D(D-B)}+ \underbrace{\dfrac{2AC (A^2+B D)(D-E)(E-B)} {[(E-B)^2 C^2 + A^2 \left(E-D \right)^2] DE}}_{G}+2\tan^{-1} \left( \dfrac{A}{C}\cdot\dfrac{E-D}{E-B} \right)$$

Using $C^2=D^2-E^2$ and $A^2=E^2-B^2$, we have

$$\begin{align}F&=AB\times \frac{-2C}{(D-E)^2-C^2}\times \frac{E-D}{DE} \\\\&=AB\times \frac{-2C}{(D-E)^2-(D^2-E^2)}\times \frac{E-D}{DE} \\\\&=AB\times \frac{-C}{E(E-D)}\times \frac{E-D}{DE} \\\\&=-\frac{ABC}{DE^2}\end{align}$$

and

$$\begin{align}G&=\dfrac{2AC (A^2+B D)(D-E)(E-B)} {[(E-B)^2(D^2-E^2)+ (E^2-B^2)\left(E-D \right)^2] DE} \\\\&=\dfrac{2AC (A^2+B D)(D-E)(E-B)} {[(E-B)(D-E)\times 2E(D-B)] DE} \\\\&=\dfrac{AC (A^2+B D)} {DE^2(D-B)}\end{align}$$

So, we finally have $$\begin{align}&\dfrac{\partial E_{x(1,2,3)}}{\partial a} \\\\&=-\frac{ABC}{DE^2}-\dfrac{AC}{D(D-B)}+\dfrac{AC (A^2+B D)}{DE^2(D-B)}+2\tan^{-1} \left( \dfrac{A}{C} \cdot \dfrac{E-D}{E-B} \right) \\\\&=\frac{AC}{DE^2(D-B)}\bigg(\underbrace{-B(D-B)-E^2+A^2+BD}_{=0}\bigg)+2\tan^{-1} \left( \dfrac{A}{C} \cdot \dfrac{E-D}{E-B} \right) \\\\&=2\tan^{-1} \left( \dfrac{A}{C} \cdot \dfrac{E-D}{E-B} \right)\end{align}$$

I think you can similarly simplify the other two.


Added :

Similarly, we get $$\dfrac{\partial E_{y(1,2,3)}}{\partial b}=2\tan^{-1} \left( \dfrac{B}{A} \cdot \dfrac{H-D}{H-C} \right)$$ $$\dfrac{\partial E_{z(1,2,3)}}{\partial c}=2\tan^{-1} \left( \dfrac{C}{B} \cdot \dfrac{I-D}{I-A} \right)$$ where $H:=\sqrt{B^2+C^2}$ and $I:=\sqrt{C^2+A^2}$.

However, it seems that the following does not always holds: $$\tan^{-1}\left(\dfrac{A}{C} \cdot \dfrac{E-D}{E-B} \right)+\tan^{-1}\left(\dfrac{B}{A} \cdot \dfrac{H-D}{H-C} \right)+\tan^{-1}\left(\dfrac{C}{B} \cdot \dfrac{I-D}{I-A} \right)=0\tag1$$

For example, for $(A,B,C)=(1,2,3)$ with $D=\sqrt{14},E=\sqrt{5},H=\sqrt{13}$ and $I=\sqrt{10}$, one gets $$\text{LHS of $(1)$}\approx -1.935746\tag2$$ (see here)


Added 2 :

For $(A,B,C)=(1,2,4)$ with $D=\sqrt{21},E=\sqrt 5,H=\sqrt{20}$ and $I=\sqrt{17}$, one gets $$\text{LHS of $(1)$}\approx -1.9119546\tag3$$ (see here) which is not equal to $(2)$.

So, it seems that the LHS of $(1)$ is not constant.

mathlove
  • 151,597