Too long for a comment .
It's just to propose one methods on power series .
Method (Power series)
First we have two inequalities ($\forall x\in[\frac{42}{100},\frac{1}{2}]$)
$$(1-x)^{4x^2}\leq \frac{1}{2}+\frac{2}{5} (\frac{1}{2}x-x^2)+ (\frac{-(2+4\ln(\frac{1}{2}))}{2}+\frac{18}{10}) (\frac{1}{2}-x)\quad(1)$$
And
$$x^{4(1-x)^2}\leq \frac{1}{2}+\frac{2}{5} (\frac{1}{2}x-\frac{1}{4})+ (\frac{-(2+4\ln(\frac{1}{2}))}{2}+\frac{18}{10}+\frac{2}{5}(x-\frac{1}{2}))(x-\frac{1}{2})$$
proof of $(1)$ :
Taking logartihm on both side then making the difference and differentiate and using :
$$8x\ln(1-x)\geq (0.5-\frac{2235}{1000}(0.5-x))\ln(0.5)$$
We get a fourth degree polynomial with a roots at $x=0.5$.Remains to study a third degree polynomial wich is not hard .
The proof of $(2)$ is similar .
For the case $\forall x\in[0,\frac{1}{3}]$ we can use the Bernoulli's inequality as in others answer . Remains just to prove the inequality on $[\frac{1}{3},\frac{45}{100}]$.I continue to explore this .
Another approach :
We use a form of the Young's inequality wich is a somewhere a generalization of the Bernoulli's inequality :
Let $a,b>0$ and $0<v<1$ then we have :
$$av+b(1-v)\geq a^vb^{1-v}$$
Taking account of this theorem and putting :
$a=x^{2(1-x)}$$\quad$$b=1$$\quad$$v=2(1-x)$ we get $0.5\leq x<1$:
$$x^{4(1-x)^2}\leq x^{2(1-x)}2(1-x)+1-2(1-x)$$
Now the idea is to show :
Let $$(1-x)^{4x^2}\leq 1-(x^{2(1-x)}2(1-x)+1-2(1-x))$$
Or :
$$(1-x)^{4x^2}\leq2(1-x)(1-x^{2(1-x)})$$
Or:
$$(1-x)^{4x^2-1}+2x^{2(1-x)}\leq 2$$
Now by Bernoulli's inequality we have :
$$2x^{2(1-x)}\leq 2-4(1-x)^2$$
So :
$$(1-x)^{4x^2-1}+2-4(1-x)^2\leq 2$$
Or :
$$(1-x)^{4x^2-3}\leq 4$$
It's not hard to show it on $[0.65,1)$
As you can see here we can improve the reasoning above and get the inequality on $[0.61,1]$
Update 20/04/2021
We can improve the reasoning using the inequality :
$$(1-v)a+vb\geq a^{1-v}b^{v}+\min{(1-v,v)}(\sqrt{a}-\sqrt{b})^2$$
Found in this article (Proposition 1.1) https://arxiv.org/pdf/1001.0535.pdf
Edit :
We have the inequality for $0<x\leq 0.55$
$$\left(\frac{1}{1-\left(1-\frac{1}{1-\left(1-x\right)^{2\left(x\right)}}\right)\left(2^{-y}x^{-y}\right)}\right)\geq x^{4\left(1-x\right)^{2}}\quad (I)$$
Where $y=\frac{-(2+4\ln(\frac{1}{2}))}{2}+1$
We have also $0<x<1$:
$$r(x)=\left(\left(\frac{1}{1+\left(\frac{g\left(x\right)}{1-\left(1-x\right)^{2x}}-g\left(x\right)\right)2^{-f\left(x\right)}x^{-f\left(x\right)}}\right)^{-1}-1+g\left(x\right)\right)^{-1}\geq x^{4\left(1-x\right)^{2}}$$
Where :
$f(x)=-\frac{\left(2+4\ln\left(0.5\right)\right)}{2}+1$
And :
$g\left(x\right)=x^{2\left(1-x\right)}+\left(1-x\right)^{2x}$
To finish we have for $\frac{1}{4}\leq x\leq \frac{3}{4}$:
$$r(x)+r(1-x)\leq 1$$
A good start to show the inequality $(I)$ see WA.The same idea can be applied to the next inequality.
To simplify a little bit $(I)$ we have the inequality for $0.47\leq x\leq 0.53$ :
$$\left(1+\left(\frac{1}{1-\left(2^{\left(2\left(1-x\right)+1\right)}\cdot\left(1-x\right)^{2}\cdot x\right)}-1\right)\cdot2^{-\left(-\frac{\left(2+4\ln\left(0.5\right)\right)}{2}+1\right)}\cdot x^{-\left(-\frac{\left(2+4\ln\left(0.5\right)\right)}{2}+1\right)}\right)\cdot x^{4\left(1-x\right)^{2}}\leq 1$$
Last edit :
It seems we have on $x\in[0.45,0.55]$ :
$$\frac{\left(2^{-\left(2\left(1-x\right)\right)^{2}}\cdot x\right)}{1-2^{\ln\left(2\right)}\left(\left(1-x\right)\cdot2\cdot x\right)^{\left(\ln\left(2\right)+1\right)}}\geq x^{\left(2\left(1-x\right)\right)^{2}}$$
Edit 21/09/2022 :
We have the inequality for $x\in(0,0.75]$:
$$\left(\left(x\right)^{b}\cdot\frac{1}{1-\left(\left(1-x\right)^{b}-1\right)\left(x^{b}-1\right)}\right)^{a}\geq f(x)=1-\left(\left(1-x\right)^{b}\cdot\frac{1}{1-\left(\left(1-x\right)^{b}-1\right)\left(x^{b}-1\right)}\right)^{a}\geq x^{4\left(1-x\right)^{2}}$$
Where $$a,b=-\frac{\ln\left(2-2^{\frac{1}{a}}\right)}{\ln\left(2\right)}$$
And $a$ is choose as :
$$f'(1/2)=1+2\ln2$$
We can also improve it for $a,b$ as above and $x\in[1/3,1)$ :
Choosing :
$$f\left(x\right)=\left(\left(1-x\right)^{b}\cdot\frac{1+4\left(\left(x-0.5\right)\left(x-1\right)x\right)^{2}}{1-\left(\left(1-x\right)^{b}-1\right)\left(x^{b}-1\right)+4\left(\left(x-0.5\right)\left(x-1\right)x\right)^{2}}\right)^{a}$$