Claim
Let $0.5\leq x<1$ and $n\geq 2$ a natural number then we have :
$$(1-x)^{(2x)^n}+x^{(2(1-x))^n}\leq 1\quad (I)$$
Sketch\Partial (of) proof .
We use a form of the Young's inequality or weighted Am-Gm :
Let $a,b>0$ and $0<v<1$ then we have :
$$av+b(1-v)\geq a^vb^{1-v}$$
Taking account of this theorem and putting :
$a=x^{(2(1-x))^{n-1}}$$\quad$$b=1$$\quad$$v=2(1-x)$ we get $0.5\leq x<1$:
$$x^{(2(1-x))^n}\leq x^{(2(1-x))^{n-1}}2(1-x)+1-2(1-x)$$
Now the idea is to show :
Let $$(1-x)^{(2x)^n}\leq 1-\Big(x^{(2(1-x))^{n-1}}2(1-x)+1-2(1-x)\Big)$$
Or :
$$(1-x)^{(2x)^n}\leq2(1-x)(1-x^{(2(1-x))^{n-1}})$$
Or:
$$(1-x)^{(2x)^n-1}+2x^{(2(1-x))^{n-1}}\leq 2\quad (0)$$
Now we want to show that :
$$(1-x)^{(2x)^n-1}\leq 2(1-x)^{(2x)^{n-1}}\quad(1)$$
For that we need a lemma :
Lemma :
Let $0.5\leq x<1$ and $n\geq 2$ a natural number then we have :
$$f(n)=\ln(1-x)((2x)^n-1-(2x)^{n-1})\leq f(n-1)=\ln(1-x)((2x)^{n-1}-1-(2x)^{n-2})$$
It's true because it's equivalent to :
$$(2x)^{n-2}(2x-1)^2\geq 0$$
So we have :
$$f(n)\leq f(2)$$
We can show also that on $[0.61,1)$ :
$$f(n)\leq f(2)\leq \ln(2)$$
Wich is equivalent to $(1)$
So we have from $(1)$ and $(0)$ we need to show :
$$2x^{(2(1-x))^{n-1}}+2(1-x)^{(2x)^{n-1}}\leq 2$$
Or :
$$x^{(2(1-x))^{n-1}}+(1-x)^{(2x)^{n-1}}\leq 1$$
So now we can use induction to prove $(I)$.
Some idea to go further :
We have the inequality :
$$f(x)=-4\cdot\left(1-x\right)\cdot x\cdot\left(\left(1-x\right)^{\frac{\left(-4\left(1-x\right)x-1\right)}{-2\left(1-x\right)}}\cdot x^{\frac{\left(-4\left(1-x\right)x-1\right)}{-2x}}\right)^{\frac{1}{2}}\left(x^{-\frac{1}{2x}}-\left(1-x\right)^{-\frac{1}{2\left(1-x\right)}}\right)\geq x^{2\left(1-x\right)}-\left(1-x\right)^{2x}\tag{E}$$
On $[0.5,0.6875]$
Now a good idea and a factorization is the expression :
$$\left(f\left(x\right)\right)^{2}+4\left(1-x\right)^{2x}x^{2\left(1-x\right)}$$
let $[0.5,0.55]$:
Then we have :
$$48\left(x-0.5\right)^{2}\geq \left(\left(1-x\right)^{\frac{1}{4\left(1-x\right)}}x^{-\frac{1}{4x}}-\left(1-x\right)^{-\frac{1}{4\left(1-x\right)}}x^{\frac{1}{4x}}\right)^{2}$$
Sketch of proof :
Denotes by :
$$n(x)=\left(1-x\right)^{\frac{1}{4\left(1-x\right)}}x^{-\frac{1}{4x}}$$
$$h\left(x\right)=\left(\left(1-x\right)^{\frac{1}{4\left(1-x\right)}}x^{-\frac{1}{4x}}-\left(1-x\right)^{-\frac{1}{4\left(1-x\right)}}x^{\frac{1}{4x}}\right)$$
And :
$$k(x)=-\left(1-x\right)^{-\frac{1}{4\left(1-x\right)}}x^{\frac{1}{4x}}$$
For $x\in[0.5,0.55]$ we have :
$$\frac{d}{dx}\left(\frac{d}{dx}h\left(x\right)\right)\leq \frac{\frac{d}{dx}\left(\frac{d}{dx}\left(\left(1-x\right)^{\frac{1}{4\left(1-x\right)}}x^{-\frac{1}{4x}}\right)\right)}{\left(1-x\right)^{\frac{1}{4\left(1-x\right)}}x^{-\frac{1}{4x}}}-\frac{\frac{d}{dx}\left(\frac{d}{dx}\left(-\left(1-x\right)^{-\frac{1}{4\left(1-x\right)}}x^{\frac{1}{4x}}\right)\right)}{-\left(1-x\right)^{-\frac{1}{4\left(1-x\right)}}x^{\frac{1}{4x}}}\leq 0$$
So the function $h(x)$ is concave and decreasing .
Remains to use a chord wich lies below the graph of the concave function $h(x)$
$(E)$ is an application of :
Let $-1\leq a<0$ and $0<x\leq y$ then we have :
$$r(x)=a\cdot x^{\frac{\left(a-1\right)}{2}}y^{\frac{\left(a-1\right)}{2}}\left(x-y\right)-x^{a}+y^{a}\geq 0\tag{G}$$
It's not hard to show that $r(x)$ is convex on $(0,y)$ then the tangent of $r(x)$ at $x=y$ lies below the graph of $r(x)$ . The rest is smooth .