Questions tagged [tangent-line-method]

For proofs inequalities by Tangent Line method.

Let $f:\mathbb{R}\rightarrow\mathbb R$ be differentiable function, $\sum\limits_{k=1}^nx_k=n$ and we need to prove that $\sum\limits_{k=1}^nf(x_k)\geq nf(1)$.

Thus, $$\sum\limits_{k=1}^nf(x_k)-nf(1)=\sum\limits_{k=1}^n\left(f(x_k)-f(1)\right)=\sum\limits_{k=1}^n\left(f(x_k)-f(1)+\lambda(x_k-1)\right),$$ where $f'(1)+\lambda=0$.

134 questions
21
votes
4 answers

Prove $\sqrt{a} + \sqrt{b} + \sqrt{c} \ge ab + bc + ca$

Let $a,b,c$ are non-negative numbers, such that $a+b+c = 3$. Prove that $\sqrt{a} + \sqrt{b} + \sqrt{c} \ge ab + bc + ca$ Here's my idea: $\sqrt{a} + \sqrt{b} + \sqrt{c} \ge ab + bc + ca$ $2(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 2(ab + bc +…
13
votes
3 answers

Proving $\left(\frac{a}{a+b+c}\right)^2+\left(\frac{b}{b+c+d}\right)^2+\left(\frac{c}{c+d+a}\right)^2+\left(\frac{d}{d+a+b}\right)^2\ge\frac{4}{9}$

The inequality: $$\left(\frac{a}{a+b+c}\right)^2+\left(\frac{b}{b+c+d}\right)^2+\left(\frac{c}{c+d+a}\right)^2+\left(\frac{d}{d+a+b}\right)^2\ge\frac{4}{9}$$ Conditions: $a,b,c,d \in \mathbb{R^+}$ I tried using the normal Cauchy-Scharwz, AM-RMS,…
11
votes
4 answers

Prove that if $a+b+c+d=4$, then $(a^2+3)(b^2+3)(c^2+3)(d^2+3)\geq256$

Given $a,b,c,d$ such that $a + b + c + d = 4$ show that $$(a^2 + 3)(b^2 + 3)(c^2 + 3)(d^2 + 3) \geq 256$$ What I have tried so far is using CBS: $(a^2 + 3)(b^2 + 3) \geq (a\sqrt{3} + b\sqrt{3})^2 = 3(a + b)^2$ $(c^2 + 3)(d^2 + 3) \geq 3(c +…
9
votes
4 answers

Given that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$.Show that:$(a+1)(b+1)(c+1)\ge 64$

Given that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ show that:$$(a+1)(b+1)(c+1)\ge 64$$ My attempt: First I tried expanding the LHS getting that$$abc+ab+bc+ca+a+b+c \ge 63$$ I applied Cauchy-Schwarz on $(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$…
9
votes
3 answers

A inequality proposed at Zhautykov Olympiad 2008

An inequality proposed at Zhautykov Olympiad 2008. Let be $a,b,c >0$ with $abc=1$. Prove that: $$\sum_{\mathrm{cyc}}{\frac{1}{(a+b)b}} \geq \frac{3}{2}.$$ Set $a=\frac{x}{y}$, $b=\frac{y}{z}$, $c=\frac{z}{x}$. Our inequality…
8
votes
3 answers

Prove or disprove $\sum\limits_{1\le i < j \le n} \frac{x_ix_j}{1-x_i-x_j} \le \frac18$ for $\sum\limits_{i=1}^n x_i = \frac12$($x_i\ge 0, \forall i$)

Problem 1: Let $x_i \ge 0, \, i=1, 2, \cdots, n$ with $\sum_{i=1}^n x_i = \frac12$. Prove or disprove that $$\sum_{1\le i < j \le n} \frac{x_ix_j}{1-x_i-x_j} \le \frac18.$$ This is related to the following problem: Problem 2: Let $x_i \ge 0, \,…
8
votes
2 answers

Inequalities - Tangent line trick

I will first state the "trick": we fix $a=\frac{a_1+a_2+...+a_n}{n}, \ $If $f$ is not convex we can sometimes prove:$$f(x)\ge f(a)+f'(a)(x-a) $$ If this manages to hold for all x, then summing up the inequality will give us the desired…
7
votes
6 answers

Prove that $\sum \limits_{cyc}\frac {a}{(b+c)^2} \geq \frac {9}{4(a+b+c)}$

Given $a$, $b$ and $c$ are positive real numbers. Prove that:$$\sum \limits_{cyc}\frac {a}{(b+c)^2} \geq \frac {9}{4(a+b+c)}$$ Additional info: We can't use induction. We should mostly use Cauchy inequality. Other inequalities can be used…
7
votes
8 answers

Prove that the minimum values of $x^2+y^2+z^2$ is $27$ with given condition $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$.

Question: Prove that the minimum values of $x^2+y^2+z^2$ is $27$, where $x,y,z$ are positive real variables satisfying the condition $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$. From AM$\ge$ GM, we have $\left( \dfrac{x^2+y^2+z^2}{3}\right)^3\ge…
7
votes
1 answer

Proof of an interesting inequality

I think this question was asked here before, but I am unable to find it at the moment. Apologies if this is due to my ineptitude. Anyway, the question is as follows: let $n>1$ be an integer number and $a_1,\dots,a_n\in\mathbb{R}^+$. We define…
Leo163
  • 2,647
7
votes
3 answers
6
votes
3 answers

A more elementary proof that if $x_i>0$ for $1\leq i\leq n$, and $\sum x_i=1$, then $(x_1+\frac{1}{x_1})\cdots(x_n+\frac{1}{x_n})\geq(n+\frac1n)^n$

For $x_i>0$, $1\leq i\leq n$ and $\sum_i x_i=1$, show that $$\left(x_1+\frac{1}{x_1}\right)\cdots \left(x_n+\frac{1}{x_n}\right)\geq \left(n+\frac{1}{n}\right)^n$$ I think this can be proved easily by Jensen's inequality. However, my child commented…
6
votes
3 answers

Prove that $ a^2+b^2+c^2 \le a^3 +b^3 +c^3 $

If $ a,b,c $ are three positive real numbers and $ abc=1 $ then prove that $a^2+b^2+c^2 \le a^3 +b^3 +c^3 $ I got $a^2+b^2+c^2\ge 3$ which can be proved $ a^2 +b^2+c^2\ge a+b+c $. From here how can I proceed to the results? Please help me to…
6
votes
5 answers

$\frac{a^2} {1+a^2} + \frac{b^2} {1+b^2} + \frac{c^2} {1+c^2} = 2.$ Prove $\frac{a} {1+a^2} + \frac{b} {1+b^2} + \frac{c} {1+c^2} \leq \sqrt{2}.$

$a, b, c ∈ \mathbb{R}+.$ WLOG assume $a \leq b \leq c.$ I tried substitution: $x=\frac{1} {1+a^2}, y=\frac{1} {1+b^2}, z=\frac{1} {1+c^2},$ so $x \geq y \geq z$ and $(1-x)+(1-y)+(1-z)=2 \to x+y+z=1.$ We want to prove $ax+by+cz \leq \sqrt{2}.$ This…
5
votes
4 answers

Prove that, for any positive integer n: $(a + b)^{n} \leq 2^{n-1}(a^{n}+b^{n})$

Prove that, for any positive integer n: $(a + b)^{n} \leq 2^{n-1}(a^{n}+b^{n}) $ I tried induction theorem, when $n = 1$ it is obviously right. But, say $n=k$, It does not make sense since I cannot expand the $2^{k-1}$($a^{k}$+$b^{k}$). And I…
1
2 3
8 9