Questions tagged [muirhead-inequality]

Inequality proof by using the Muirhead inequality.

Let $\alpha_1\geq\alpha_2\geq...\geq\alpha_n\geq0$ and $\beta_1\geq\beta_2\geq...\geq\beta_n$.

We'll write $$(\alpha_1,\alpha_2,..., \alpha_n)\succ(\beta_1,\beta_2,...,\beta_n)$$ iff $$\alpha_1\geq\beta_1,$$ $$\alpha_1+\alpha_2\geq\beta_1+\beta_2,$$ $$.$$ $$.$$ $$.$$ $$\alpha_1+\alpha_2+...+\alpha_n=\beta_1+\beta_2+...+\beta_n.$$

  • Muirhead inequality it's the following.

Let $x_1$, $x_2$,..., $x_n$ be positive numbers and $(\alpha_1,\alpha_2,..., \alpha_n)\succ(\beta_1,\beta_2,...,\beta_n)$. Prove that: $$\sum_{sym}\prod_{i=1}^nx_i^{\alpha_i}\geq\sum_{sym}\prod_{i=1}^nx_i^{\beta_i}$$

See also:

111 questions
14
votes
2 answers

How to prove that $\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}\leq\frac{3\sqrt{3}}{4}$?

Let $a,b,c>0: (a+b)(b+c)(c+a)=ab+bc+ca$. How to prove that $$\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}\leq\frac{3\sqrt{3}}{4}$$
9
votes
2 answers

Proving $\sum\limits_{\text{cyc}} \frac{a}{b^2+c^2+d^2} \geq \frac{3\sqrt{3}}{2}\frac{1}{\sqrt{a^2+b^2+c^2+d^2}}$ for $a, b, c, d >0$

Let $a, b, c, d > 0$. Prove that $$\frac{a}{b^2+c^2+d^2}+\frac{b}{a^2+c^2+d^2}+\frac{c}{a^2+b^2+d^2}+\frac{d}{a^2+b^2+c^2}$$ $$\geq\frac{3\sqrt{3}}{2}\frac{1}{\sqrt{a^2+b^2+c^2+d^2}}.$$ What I tried, was to say that $a^2+b^2+c^2+d^2=1$ and…
8
votes
1 answer

What is majorization, and how is it related to Muirhead's inequalities?

I was reading the following article: http://math.rice.edu/MathCircle/References/0%20Mildorf%20Inequalities%202%20-%20LECTURE.pdf As I'm not too experienced with problem solving in inequalities, I have a few questions about this. What is…
Ayesha
  • 2,740
8
votes
1 answer

Given three positive numbers $a,b,c$. Prove that $\sum\limits_{cyc}\sqrt{\frac{a+b}{b+1}}\geqq3\sqrt[3]{\frac{4\,abc}{3\,abc+1}}$ .

Ji Chen. Given three positive numbers $a, b, c$. Prove that $$\sum\limits_{cyc}\sqrt{\frac{a+ b}{b+ 1}}\geqq 3\sqrt[3]{\frac{4\,abc}{3\,abc+ 1}}$$ Of course, we've to solve it by $uvw$, before that, I tried to use Holder-inequality with integer…
user688846
7
votes
4 answers

Prove that: $S=\frac{a^2}{(2a+b)(2a+c)}+\frac{b^2}{(2b+c)(2b+a)}+\frac{c^2}{(2c+a)(2c+b)} \leq \frac{1}{3}$

Let $a,b,c>0$: Prove that: $S=\frac{a^2}{(2a+b)(2a+c)}+\frac{b^2}{(2b+c)(2b+a)}+\frac{c^2}{(2c+a)(2c+b)} \leq \frac{1}{3}$ My solution: We have: $\left[\begin{matrix}\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y} \\\frac{1}{x}+\frac{1}{y} +\frac{1}{z}…
7
votes
4 answers

Prove this inequality: $\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}+3$

Let $a$,$b$,$c$ be positive real numbers such that $abc=1$. Prove that $$\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}+3$$ I tried various methods. But, couldn't solve it. It'd be great if anyone…
6
votes
1 answer

Seeking concise proof: $\frac18(a^2+b^2)(b^2+c^2)(c^2+a^2)\ge\frac1{27}(ab+bc+ca)^3$, where $a$, $b$, $c$ are positive numbers

I was just encountered an inequality in AoPs, Here it is: http://www.artofproblemsolving.com/Forum/viewtopic.php?f=51&t=4569&view=next, that is: If $a$, $b$ and $c$ are positive numbers, then we have inequality:…
6
votes
3 answers

Prove that $ a^2+b^2+c^2 \le a^3 +b^3 +c^3 $

If $ a,b,c $ are three positive real numbers and $ abc=1 $ then prove that $a^2+b^2+c^2 \le a^3 +b^3 +c^3 $ I got $a^2+b^2+c^2\ge 3$ which can be proved $ a^2 +b^2+c^2\ge a+b+c $. From here how can I proceed to the results? Please help me to…
6
votes
1 answer

Proving $a^{-2}bcd+b^{-2}cda+c^{-2}dab+d^{-2}abc\geqslant a+b+c+d$

If $a,b,c,d$ are positive real numbers, then prove that $$\frac{bcd}{a^2}+\frac{cda}{b^2}+\frac{dab}{c^2}+\frac{abc}{d^2}\geqslant a+b+c+d$$ Attempt: $$\frac{bcd}{a^2}+\frac{cda}{b^2}+\frac{dab}{c^2}+\frac{abc}{d^2} =…
6
votes
4 answers

Prove this inequality $\sum\limits_\text{cyc}\sqrt{1-xy}\ge 2$

Let $x,y,z\ge 0$, and $x+y+z=2$, show that $$\sqrt{1-xy}+\sqrt{1-yz}+\sqrt{1-xz}\ge 2.$$ Mt try: $$\Longleftrightarrow 3-(xy+yz+zx)+2\sum_\text{cyc}\sqrt{(1-xy)(1-yz)}\ge 4$$ or $$\sum_\text{cyc}\sqrt{(1-xy)(1-yz)}\ge\dfrac{1}{2}(1+xy+yz+zx)$$
5
votes
1 answer

Proving AM-GM via $n \cdot (a_1^n + a_2^n + \dots + a_n^n) \ge (a_1^{n-1} + a_2^{n-1} + \dots + a_n^{n-1}) \cdot (a_1 + a_2 + \dots + a_n)$

I want to prove the arithmetic–geometric mean inequality. To prove that, I need the following inequality: Suppose that $n$ is an integer which is greater than or equal to $1$ and $a_1, a_2, \dots, a_n \in \Bbb{R}$. Then, $$n \cdot (a_1^n + a_2^n +…
5
votes
4 answers

How can we not use Muirhead's Inequality for proving the following inequality?

There was a question in the problem set in my math team training homework: Show that $∀a, b, c ∈ \mathbb{R}_{≥0}$ s.t. $a + b + c = 1, 7(ab + bc + ca) ≤ 2 + 9abc.$ I used Muirhead's inequality to do the question (you can try out yourself): By…
5
votes
3 answers

Prove $x+y+z \ge xy+yz+zx$

Given $x,y,z \ge 0$ and $x+y+z=4-xyz$ Then Prove that $$x+y+z \ge xy+yz+zx$$ My try: Letting $x=1-a$, $y=1-b$ and $z=1-c$ we get $$(1-a)+(1-b)+(1-c)+(1-a)(1-b)(1-c)=4$$ $$-(a+b+c)-(a+b+c)+ab+bc+ca-abc=0$$ $$ab+bc+ca-abc=2(a+b+c)$$ Where $a, b,c \le…
Umesh shankar
  • 11,335
  • 5
  • 33
  • 73
4
votes
3 answers

Confusion with rearrangements in the book of Phan Kim Hung "Secrets in Inequalities" APMO 1998

I am only being introduced to Olympiad math, and one particular aspect of it caught my attention in the book "Secrets in Inequalities". It's $$\text{Let $x, y, z$ be positive real numbers. Prove…
4
votes
1 answer

Minimum of $abc$ when $a^3+b^3+c^3\geq a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}.$

Let $a,b,c$ be positive real numbers with $abc=k$ such that the inequality $$a^3+b^3+c^3\geq a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}$$ holds for all $a,b,c$. Find the minimum value of $k$. I found that $abc=2$ works. Here is my proof for $abc=2$: By…
1
2 3 4 5 6 7 8