Let $f(x)=(1+x)^{\frac{1}{x}}\left(1+\frac{1}{x}\right)^x, 0<x\leq 1.$ Prove that $f$ is strictly increasing and $e<f(x)\leq 4.$
In order to study the Monotonicity of $f$, let $$g(x)=\log f(x)=\frac{1}{x}\log (1+x)+x\log \left(1+\frac{1}{x}\right).$$ And $f$ and $g$ has the same Monotonicity. By computation, $$g'(x)=\frac{1}{x^2}\left(\frac{x}{1+x}-\log (1+x)\right)+\log \left(1+\frac{1}{x}\right)-\frac{1}{1+x}.$$ As we know $\frac{x}{1+x}-\log (1+x)\leq 0$ and $\log \left(1+\frac{1}{x}\right)-\frac{1}{1+x}\geq 0$. So it does not determine the sign of $g'(x)$. If we compute the second derivative $g''(x)$, you will find it is also difficult to determine the sign of $g''(x)$. Our main goal is to prove $$\frac{1}{x^2}\left(\frac{x}{1+x}-\log (1+x)\right)+\log \left(1+\frac{1}{x}\right)-\frac{1}{1+x}>0.$$
Is there some tricks to prove this result. Any help and hint will welcome.