Let $a,b,c$ are non-negative numbers, such that $a+b+c = 3$.
Prove that $\sqrt{a} + \sqrt{b} + \sqrt{c} \ge ab + bc + ca$
Here's my idea:
$\sqrt{a} + \sqrt{b} + \sqrt{c} \ge ab + bc + ca$
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 2(ab + bc + ca)$
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) - 2(ab + bc + ca) \ge 0$
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) - ((a+b+c)^2 - (a^2 + b^2 + c^2) \ge 0$
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + (a^2 + b^2 + c^2) - (a+b+c)^2 \ge 0$
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + (a^2 + b^2 + c^2) \ge (a+b+c)^2$
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + (a^2 + b^2 + c^2) \ge 3^2 = 9$
And I'm stuck here.
I need to prove that:
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + (a^2 + b^2 + c^2) \ge (a+b+c)^2$ or
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + (a^2 + b^2 + c^2) \ge 3(a+b+c)$, because $a+b+c = 3$
In the first case using Cauchy-Schwarz Inequality I prove that:
$(a^2 + b^2 + c^2)(1+1+1) \ge (a+b+c)^2$
$3(a^2 + b^2 + c^2) \ge (a+b+c)^2$
Now I need to prove that:
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + (a^2 + b^2 + c^2) \ge 3(a^2 + b^2 + c^2)$
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 2(a^2 + b^2 + c^2)$
$\sqrt{a} + \sqrt{b} + \sqrt{c} \ge a^2 + b^2 + c^2$
I need I don't know how to continue.
In the second case I tried proving:
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 2(a+b+c)$ and
$a^2 + b^2 + c^2 \ge a+b+c$
Using Cauchy-Schwarz Inequality I proved:
$(a^2 + b^2 + c^2)(1+1+1) \ge (a+b+c)^2$
$(a^2 + b^2 + c^2)(a+b+c) \ge (a+b+c)^2$
$a^2 + b^2 + c^2 \ge a+b+c$
But I can't find a way to prove that $2(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 2(a+b+c)$
So please help me with this problem.
P.S
My initial idea, which is proving:
$2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + (a^2 + b^2 + c^2) \ge 3^2 = 9$
maybe isn't the right way to prove this inequality.
