It's wrong! Try $a=b=c=d=-1$.
For positive variables it's true.
Indeed, by Holder we obtain:
$$\left(\sum_{cyc}\frac{a}{b^2+c^2+d^2}\right)^2\sum_{cyc}a^2(b^2+c^2+d^2)^2\geq(a^2+b^2+c^2+d^2)^3.$$
Let $a^2=x$, $b^2=y$, $c^2=z$ and $d^2=t$.
Thus, it's enough to prove that
$$4(x+y+z+t)^4\geq27\sum_{cyc}x^2(y+z+t)^2.$$
Now, let $x=\min\{x,y,z,t\},$ $y=x+u,$ $z=x+v$ and $t=x+w$.
Thus, $u$, $v$ and $w$ are non-negatives and $$4(x+y+z+t)^4-27\sum_{cyc}x^2(y+z+t)^2=$$
$$=52x^4+52(u+v+w)x^3+12\sum_{cyc}(5u^2+uv)x^2+$$
$$+4\sum_{cyc}(16u^3-6u^2v-6u^2w+5uvw)x+$$
$$+2\sum_{cyc}(2u^4+8u^3v+8u^3w-15u^2v^2-3u^2vw)\geq0$$
because by Muirhead
$$\sum_{cyc}(16u^3-6u^2v-6u^2w+5uvw)\geq \sum_{cyc}(12u^3-6u^2v-6u^2w)\geq0$$ and
$$\sum_{cyc}(2u^4+8u^3v+8u^3w-15u^2v^2-3u^2vw)\geq0.$$
Done!
The inequality $$4(x+y+z+t)^4\geq27\sum_{cyc}x^2(y+z+t)^2$$ we can prove also by the Lagrange multipliers method.
Indeed let $x+y+z+t=3$, where $x$, $y$, $z$ and $t$ be non-negatives.
Thus, we need to prove that
$$\sum_{cyc}x^2(3-x)^2\leq12.$$
Now, let $$f(x,y,z,t)=\sum_{cyc}x^2(3-x)^2+\lambda(x+y+z+t-3).$$
Thus, $f$ is a continuous function on the compact
$$C=\{(x,y,z,t)|x\geq0,y\geq0,z\geq0,t\geq0,x+y+z+t=3\},$$
which says that $f$ gets on $C$ the maximal value.
Let $(x,y,z,t)$ be a maximum point.
In this point we have two cases:
- One of our variables is equal to zero.
Let $t=0$.
Thus, we need to prove that
$$\sum_{cyc}x^2(3-x)\leq12, $$ where $x+y+z=3$ or
$$\sum_{cyc}(4-x^2(3-x)^2)\geq0$$ or
$$\sum_{cyc}(4-x^2(3-x)^2+4(x-1))\geq0$$ or
$$\sum_{cyc}x(4-x)(x-1)^2\geq0,$$ which is obvious.
- $$\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=\frac{\partial f}{\partial z}=\frac{\partial f}{\partial t}=0,$$ which gives
$$9x-9x^2+2x^3=9y-9y^2+2y^3=9z-9z^2+2z^3=9t-9t^2+2t^3$$ and from here we obtain:
$$(x-y)(2x^2+2xy+2y^2-9x-9y+9)=0,$$
$$(x-z)(2x^2+2xz+2z^2-9x-9z+9)=0,$$
$$(x-t)(2x^2+2xt+2t^2-9x-9t+9)=0,$$
$$(y-z)(2y^2+2yz+2z^2-9y-9z+9)=0,$$
$$(y-t)(2y^2+2yt+2t^2-9y-9t+9)=0$$ and
$$(z-t)(2z^2+2zt+2t^2-9z-9t+9)=0.$$
Now, let $x\neq y$, $x\neq z$ and $x\neq t.$
Thus, $$2x^2+2xy+2y^2-9x-9y+9=2x^2+2xz+2z^2-9x-9z+9=2x^2+2xt+2t^2-9x-9t+9$$ or
$$(y-z)(2(x+y+z)-9)=0$$ and
$$(y-t)(2(x+y+t)-9=0$$ or
$$(y-z)(2(3-t)-9)=0$$ and
$$(y-t)(2(3-z)-9)=0,$$ which gives $y=z=t.$
If $x=y$, but $y\neq z$ and $y\neq t$ we obtain
$$2y^2+2yz+2z^2-9y-9z+9=2y^2+2yt+2t^2-9y-9t+9$$ or
$$(z-t)(2x+3)=0,$$ which gives $z=t$.
Id est, it's enough to prove $\sum\limits_{cyc}x^2(3-x)\leq12$ in two cases:
- $y=z=x$ and $t=3-3x,$ where $0\leq x\leq1$.
Thus, we need to prove that
$$3x^2(3-x)^2+9(3-3x)^2x^2\leq12$$ or
$$(1-x)(7x^3-8x^2+x+1)\geq0,$$
which is true because by AM-GM
$$7x^3-8x^2+x+1=3\cdot\frac{7}{3}x^3+x+1-8x^2\geq$$
$$\geq5\sqrt[5]{\left(\frac{7}{3}x\right)^3\cdot x\cdot1}-8x^2=\left(5\sqrt[5]{\frac{343}{27}}-8\right)x^2\geq0.$$
2. $x=y$, $z=t$.
Thus, $z=t=\frac{3}{2}-x,$ where $0\leq x\leq\frac{3}{2}$ and we need to prove that
$$2x^2(3-x)^2+2\left(\frac{3}{2}-x\right)^2\left(\frac{3}{2}+x\right)^2\leq12$$ or
$$x^2(3-2x)^2\leq\frac{15}{8}$$ or
$$x(3-2x)\leq\sqrt{\frac{15}{8}},$$ which is true by AM-GM again:
$$x(3-2x)=\frac{1}{2}2x(3-2x)\leq\frac{1}{2}\left(\frac{2x+3-2x}{2}\right)^2=\frac{9}{8}<\sqrt{\frac{15}{8}}.$$