Given $x,y,z \ge 0$ and $x+y+z=4-xyz$ Then Prove that
$$x+y+z \ge xy+yz+zx$$
My try:
Letting $x=1-a$, $y=1-b$ and $z=1-c$ we get
$$(1-a)+(1-b)+(1-c)+(1-a)(1-b)(1-c)=4$$
$$-(a+b+c)-(a+b+c)+ab+bc+ca-abc=0$$
$$ab+bc+ca-abc=2(a+b+c)$$
Where $a, b,c \le 1$
is there a clue here?