If $a,b,c,d$ are positive real numbers, then prove that $$\frac{bcd}{a^2}+\frac{cda}{b^2}+\frac{dab}{c^2}+\frac{abc}{d^2}\geqslant a+b+c+d$$
Attempt: $$\frac{bcd}{a^2}+\frac{cda}{b^2}+\frac{dab}{c^2}+\frac{abc}{d^2} = \frac{abcd}{a^3}+\frac{abcd}{b^3}+\frac{abcd}{c^3}+\frac{abcd}{d^3}$$
Using AM-GM inequality: $$abcd\big[a^{-3}+b^{-3}+c^{-3}+d^{-3}\big]\geqslant4abcd(abcd)^{-\frac{1}{4}}$$
Could anyone help me?