This integral can be written in the closed form via Beta-function of negative arguments.
Let's consider $I=\int_{0}^{\infty} \big( (y + x)^{\lambda - 1} - y^{\lambda - 1} \big) y^{-\beta} dy\,\,, \lambda\in(0,1)$ and $\beta\in(0,\lambda/2)$
Making change $y=xt$
$$I(x, \lambda, \beta)=x^{\lambda-\beta}\int_{0}^{\infty} \big( (1 + t)^{\lambda - 1} - t^{\lambda - 1} \big) t^{-\beta} dt$$
Making change $\frac{1}{1+t}=s$
$$I=x^{\lambda-\beta}\int_0^1 \frac{ds}{s^2}\Bigl(\frac{s}{1-s}\Bigr)^{\beta}\biggl(s^{1-\lambda}-\Bigl(\frac{s}{1-s}\Bigr)^{1 - \lambda}\biggr)$$ $$=x^{\lambda-\beta}\int_0^1 s^{\beta-\lambda-1}\Bigl((1-s)^{-\beta}-(1-s)^{\lambda-1-\beta}\Bigr)ds$$
Now we want to evaluate the integral $J(\gamma,\alpha,\alpha')=\int_0^1s^{\gamma-1}\left((1-s)^{\alpha-1}-(1-s)^{\alpha'-1}\right)ds$, where $\gamma\in(-1;0)$ and $\alpha, \alpha'\in(0,1)$.
We introduce the analytical continuation of Beta-function $\Bigl (B(\gamma,\alpha)=\int_0^1s^{\gamma-1}(1-s)^{\alpha-1}ds$, if $\gamma, \alpha >0\,\Bigr)$ for $\boldsymbol{negative}$ $\gamma\in(-1,0)$:
$$B(\gamma,\alpha)=-\frac{1}{(\exp(2\pi{i}\alpha)-1)(\exp(2\pi{i}\gamma)-1)}\oint_Ps^{\gamma-1}(1-s)^{\alpha-1}ds$$
where $P$ is Pochhammer contour in the complex plane.
It can be shown (please look at the second post below) that for $\gamma\in(-1;0)$ and $\alpha>0$ $B(\gamma,\alpha)=\lim_{r\to0}(\int_r^1s^{\gamma-1}(1-s)^{\alpha-1}ds+\frac{r^\gamma}{\gamma})$,
so $$J(\gamma,\alpha,\alpha')=\int_0^1s^{\gamma-1}\left((1-s)^{\alpha-1}-(1-s)^{\alpha'-1}\right)ds$$$$=\lim_{r\to0}\int_r^1s^{\gamma-1}\left((1-s)^{\alpha-1}-(1-s)^{\alpha'-1}\right)ds=\lim_{r\to0}\left(B(\gamma,\alpha)-\frac{r^\gamma}{\gamma}-B(\gamma,\alpha')+\frac{r^\gamma}{\gamma}\right)$$ $$J(\gamma,\alpha,\alpha')=B(\gamma,\alpha)-B(\gamma,\alpha')$$
It can also be proved that analytically continued Beta-function is expressed in the usual way in terms of Gamma-function: $B(\gamma,\alpha)=\frac{\Gamma(\gamma)\Gamma(\alpha)}{\Gamma(\gamma+\alpha)}$. This expression is valid for all complex $\alpha, \gamma$.
So, in our case we can write
$$I(x, \lambda, \beta)=x^{\lambda-\beta}\int_0^1 s^{\beta-\lambda-1}\Bigl((1-s)^{-\beta}-(1-s)^{\lambda-1-\beta}\Bigr)ds$$ $$=x^{\lambda-\beta}\Bigl(B(\beta-\lambda; 1-\beta)-B(\beta-\lambda; \lambda-\beta)\Bigr)=x^{\lambda-\beta}\Bigl(\frac{\Gamma(\beta-\lambda)\Gamma(1-\beta)}{\Gamma(1-\lambda)}-\frac{\Gamma(\beta-\lambda)\Gamma(\lambda-\beta)}{\Gamma(0)}\Bigr)$$
But $\frac{1}{\Gamma(0)}=0\,$, so we get the final result:
$$I(x, \lambda, \beta)=x^{\lambda-\beta}\frac{\Gamma(\beta-\lambda)\Gamma(1-\beta)}{\Gamma(1-\lambda)}, \text{where} \,\,\beta-\lambda<0$$
Using $\Gamma(1+\beta-\lambda)=(\beta-\lambda)\Gamma(\beta-\lambda)$ we can also express the integral in terms of Gamma-function of positive argument:
$$I(x, \lambda, \beta)=\,-\,x^{\lambda-\beta}\frac{\Gamma(1+\beta-\lambda)\Gamma(1-\beta)}{(\lambda-\beta)\Gamma(1-\lambda)}$$