We can also try to evaluate the integral simply integrating by part.
$$I=\int_0^1 \frac{x-\arcsin x}{x^3}dx=-\frac{1}{2}\int_0^1 (x-\arcsin x)d\Big(\frac{1}{x^2}\Big)$$
$$=-\frac{x-\arcsin x}{2x^2}\Big|_0^1+\frac{1}{2}\int_0^1\frac{dx}{x^2}\Big(1-\frac{1}{\sqrt{1-x^2}}\Big)$$
Making the substitution $t=x^2$ in the second integral
$$I=\frac{\pi}{4}-\frac{1}{2}+\frac{1}{4}\int_0^1\Big(t^{-\frac{1}{2}-1}-t^{-\frac{1}{2}-1}(1-t)^{\frac{1}{2}-1}\Big)dt$$
Now we can use the analytical continuation of Beta-function $\Bigl (B(\gamma,\alpha)=\int_0^1s^{\gamma-1}(1-s)^{\alpha-1}ds$, if $\gamma, \alpha >0\,\Bigr)$ for negative $\gamma\in(-1,0)$:
$$B(\gamma,\alpha)=-\frac{1}{(\exp(2\pi{i}\alpha)-1)(\exp(2\pi{i}\gamma)-1)}\oint_Ps^{\gamma-1}(1-s)^{\alpha-1}ds$$
where $P$ is Pochhammer contour in the complex plane.
It can be shown (for example, here) that for $\gamma\in(-1;0)$ and $\alpha>0$ $B(\gamma,\alpha)=\lim_{r\to0}(\int_r^1s^{\gamma-1}(1-s)^{\alpha-1}ds+\frac{r^\gamma}{\gamma})$,
so $$J(\gamma,\alpha,\alpha')=\int_0^1s^{\gamma-1}\left((1-s)^{\alpha-1}-(1-s)^{\alpha'-1}\right)ds$$$$=\lim_{r\to0}\int_r^1s^{\gamma-1}\left((1-s)^{\alpha-1}-(1-s)^{\alpha'-1}\right)ds=\lim_{r\to0}\left(B(\gamma,\alpha)-\frac{r^\gamma}{\gamma}-B(\gamma,\alpha')+\frac{r^\gamma}{\gamma}\right)$$ $$J(\gamma,\alpha,\alpha')=B(\gamma,\alpha)-B(\gamma,\alpha')\,,\,\gamma\in(-1;0)\,,\,\, \alpha,\alpha'>0 $$
It can also be proved that analytically continued Beta-function is expressed in the usual way in terms of Gamma-function: $B(\gamma,\alpha)=\frac{\Gamma(\gamma)\Gamma(\alpha)}{\Gamma(\gamma+\alpha)}$. This expression is valid for all complex $\alpha, \gamma$.
Coming back to the initial integral
$$I=\frac{\pi}{4}-\frac{1}{2}+\frac{1}{4}\Big(B\big(-\frac{1}{2};1\big)-B\big(-\frac{1}{2};-\frac{1}{2}\big)\Big)$$
$$=\frac{\pi}{4}-\frac{1}{2}+\frac{1}{4}\bigg(\frac{\Gamma\big(-\frac{1}{2}\big)\Gamma(1)}{\Gamma\big(\frac{1}{2}\big)}-\frac{\Gamma\big(-\frac{1}{2}\big)\Gamma\big(\frac{1}{2}\big)}{\Gamma (0)}\bigg)$$
Given than $\Gamma(0)=\infty$ and $\Gamma\big(-\frac{1}{2}\big)=-2\Gamma\big(\frac{1}{2}\big)$
$$I=\frac{\pi}{4}-\frac{1}{2}-\frac{1}{2}=\frac{\pi}{4}-1$$
WolframAlpha gives the same result.
$$\mathcal{I}_\text{n}:=\int_0^1\frac{x-\arcsin\left(x\right)}{x^\text{n}}\space\text{d}x=\frac{1}{2-\text{n}}+\frac{\pi}{2\left(\text{n}-1\right)}+\frac{\sqrt{\pi}}{\left(\text{n}-1\right)^2}\cdot\frac{\Gamma\left(1-\frac{\text{n}}{2}\right)}{\Gamma\left(\frac{1}{2}-\frac{\text{n}}{2}\right)}\tag1$$
– Jan Eerland Feb 12 '22 at 13:44