We have from first principles that
$$\bbox[5px,border:2px solid #00A000]{
S_n = \sum_{r=0}^n
\frac{1}{4^r} {2r\choose r} = \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{n+1}} \frac{1}{1-z} \frac{1}{\sqrt{1-z}}.}$$
Now put $1-\sqrt{1-z} = w$ so that $z=w(2-w)$ and $dz = 2(1-w)\; dw$
to get
$$\; \underset{w}{\mathrm{res}} \; \frac{1}{w^{n+1} (2-w)^{n+1}}
\frac{1}{(1-w)^2} \frac{1}{1-w} 2(1-w) \\ = 2 (-1)^{n+1} \;
\underset{w}{\mathrm{res}} \; \frac{1}{w^{n+1} (w-2)^{n+1}}
\frac{1}{(w-1)^2}.$$
The residue at infinity is zero by inspection so we need the residues
at $w=1$ and $w=2.$ For the former we get without the scalar in front
$$\left.\left( \frac{1}{w^{n+1}} \frac{1}{(w-2)^{n+1}}
\right)'\right|_{w=1} \\ = \left.\left(- (n+1) \frac{1}{w^{n+2}}
\frac{1}{(w-2)^{n+1}} - \frac{1}{w^{n+1}} (n+1) \frac{1}{(w-2)^{n+2}}
\right)\right|_{w=1} \\= -(n+1) (-1)^{n+1} - (n+1) (-1)^{n+2} = 0.$$
With this our sum is minus the residue at $w=2.$ We write
$$2 (-1)^{n} \;\mathrm{Res}_{w=2} \frac{1}{((w-2)+2)^{n+1}}
\frac{1}{(w-2)^{n+1}} \frac{1}{((w-2)+1)^2} \\ = \frac{(-1)^{n}}{2^n}
\;\mathrm{Res}_{w=2} \frac{1}{(1+(w-2)/2)^{n+1}} \frac{1}{(w-2)^{n+1}}
\frac{1}{(1+(w-2))^2}.$$
This will produce
$$\bbox[5px,border:2px solid #00A000]{ S_n = \frac{1}{2^n}
\sum_{q=0}^n {n+q\choose n} \frac{1}{2^q} (n-q+1).}$$
First piece
Now we get two pieces here, where $S_n = A_n + B_n$, the first is
$$A_n = \frac{n+1}{2^n} \; \mathrm{Res}_{z=0} \; \frac{1}{z^{n+1}}
\frac{1}{1-z} \frac{1}{(1-z/2)^{n+1}} \\ = (-1)^n 2 (n+1) \;
\mathrm{Res}_{z=0} \; \frac{1}{z^{n+1}} \frac{1}{z-1}
\frac{1}{(z-2)^{n+1}}.$$
We evaluate this using the residues at $z=1$ and $z=2.$ We get for the
former the value $-2(n+1).$ We write for the latter
$$(-1)^n 2 (n+1) \; \mathrm{Res}_{z=2} \; \frac{1}{((z-2)+2)^{n+1}}
\frac{1}{(z-2)+1} \frac{1}{(z-2)^{n+1}} \\ = (-1)^n \frac{n+1}{2^n} \;
\mathrm{Res}_{z=2} \; \frac{1}{((z-2)/2+1)^{n+1}} \frac{1}{(z-2)+1}
\frac{1}{(z-2)^{n+1}}$$
This yields
$$(-1)^n \frac{n+1}{2^n} \sum_{q=0}^n {n+q\choose q} (-1)^q
\frac{1}{2^q} (-1)^{n-q}.$$
Simplify to obtain $A_n$. With residues adding to zero, we have
established that for the first piece $A_n$ it evaluates to $A_n =
n+1.$
Second piece
For the second piece we find
$$B_n = - \frac{n+1}{2^n} \sum_{q=1}^n {n+q\choose n+1} \frac{1}{2^q}
= -\frac{n+1}{2^{n+1}} \sum_{q=0}^{n-1} {n+1+q\choose n+1}
\frac{1}{2^q} \\ = -\frac{n+1}{2^{n+1}} \; \mathrm{Res}_{z=0} \;
\frac{1}{z^n} \frac{1}{1-z} \frac{1}{(1-z/2)^{n+2}} \\ = (-1)^{n} 2
(n+1) \; \mathrm{Res}_{z=0} \; \frac{1}{z^n} \frac{1}{z-1}
\frac{1}{(z-2)^{n+2}}.$$
Again evaluate using residues at $z=1$ and $z=2.$ We get for the
former the value $2(n+1).$ For the latter we write
$$(-1)^n \frac{n+1}{2^{n-1}} \; \mathrm{Res}_{z=2} \;
\frac{1}{((z-2)/2+1)^{n}} \frac{1}{(z-2)+1} \frac{1}{(z-2)^{n+2}}$$
This yields
$$(-1)^n \frac{n+1}{2^{n-1}} \sum_{q=0}^{n+1} {n-1+q\choose q} (-1)^q
\frac{1}{2^q} (-1)^{n+1-q} \\ = - \frac{n+1}{2^{n-1}} \sum_{q=0}^{n-1}
{n-1+q\choose q} \frac{1}{2^q} - \frac{n+1}{2^{2n-1}} {2n-1\choose n}
- \frac{n+1}{2^{2n}} {2n\choose n+1}.$$
The sum is
$$- \frac{n+1}{2^{n-1}} A_{n-1} \frac{2^{n-1}}{n} = - (n+1)$$
hence piece $B_n$ evaluates as
$$\frac{n+1}{2^{2n-1}} {2n-1\choose n} + \frac{n+1}{2^{2n}} {2n\choose
n+1} - (n+1).$$
Conclusion
Adding the two pieces we have shown that
$$\bbox[5px,border:2px solid #00A000]{
S_n = \frac{2n+1}{2^{2n}} {2n\choose n} = {n+1/2\choose n}.}$$
as claimed. This may be seen from (evaluate LHS)
$$(2n+1) [z^n] \frac{1}{\sqrt{1-z}}
= (2n+1) {-1/2\choose n} (-1)^n \\ = (2n+1)
{n-1/2\choose n} = {n+1/2\choose n}.$$