I derive an intermediate formula for the sum for the general case of $\zeta (2k)$, then specialise to the case $\zeta(4)$ and evaluate it. Then use the formula to evaluate the general case in terms of Bernoulli numbers. First, note
\begin{align*}
\sum_{n=1}^\infty \dfrac{1}{n^{2k}} & = \frac{1}{(2k-1)!} \sum_{n=1}^\infty \dfrac{1}{n^{2k}} \int_0^\infty e^{-y} y^{2k-1} dy
\nonumber \\
& = \frac{1}{(2k-1)!} \sum_{n=1}^\infty \int_0^\infty e^{-nx} x^{2k-1} dx
\nonumber \\
& = \frac{1}{(2k-1)!} \int_0^\infty \dfrac{x^{2k-1}}{e^{x} - 1} dx
\nonumber \\
& = \frac{1}{(2k)!} \int_0^\infty \dfrac{x^{2k} e^x}{(e^x - 1)^2} dx
\nonumber \\
& = \frac{1}{2 \cdot (2k)!} \int_{-\infty}^\infty \dfrac{x^{2k} e^x}{(e^x - 1)^2} dx .
\end{align*}
where we have performed an integration by parts and extended the range of integration. We can write the final integral in a way that is amenable to complex integration, with an identity. Note
\begin{align*}
\int_{-\infty}^\infty \dfrac{x^{2k} e^x}{(e^x - 1)^2} dx - \int_{-\infty}^\infty \dfrac{x^{2k} e^x}{(e^x + 1)^2} & = \int_{-\infty}^\infty \dfrac{4 x^{2k} e^{2x}}{(e^{2x} - 1)^2} dx
\nonumber \\
& = \int_{-\infty}^\infty \dfrac{2^{-2k+1} (2x)^{2k} e^{2x}}{(e^{2x} - 1)^2} 2dx
\nonumber \\
& = 2^{-2k+1} \int_{-\infty}^\infty \dfrac{x^{2k} e^x}{(e^x - 1)^2} dx
\end{align*}
implying
\begin{align*}
\int_{-\infty}^\infty \dfrac{x^{2k} e^x}{(e^x - 1)^2} dx = \frac{1}{1- 2^{-2k+1}} \int_{-\infty}^\infty \dfrac{x^{2k} e^x}{(e^x + 1)^2}
\end{align*}
So
\begin{align*}
\sum_{n=1}^\infty \dfrac{1}{n^{2k}} & = \frac{1}{2 \cdot (2k)!} \frac{1}{1- 2^{-2k+1}} \int_{-\infty}^\infty \dfrac{x^{2k} e^x}{(e^x + 1)^2}
\end{align*}
We can write
\begin{align*}
\sum_{n=1}^\infty \dfrac{1}{n^{2k}} & = \frac{1}{2 \cdot (2k)!} \frac{1}{1- 2^{-2k+1}} \left. \frac{\partial^{2k}}{\partial \alpha^{2k}} \int_{-\infty}^\infty \dfrac{e^{\alpha x} e^x}{(e^x + 1)^2} \right|_{\alpha=0} \qquad (1)
\end{align*}
where $-\frac{1}{2} \leq \alpha \leq \frac{1}{2}$. We now evaluate this integral using complex analysis. Consider the rectangular contour, $C$, in the figure

and the integral
\begin{align*}
\oint_C \dfrac{e^{\alpha z} e^z}{(e^z + 1)^2} dz
\end{align*}
whose integrand has a pole at $\pi i$. The integral along the vertical edges vanishes as:
\begin{align*}
f(z) = \dfrac{e^{\alpha (x+iy)} e^{(x+iy)}}{(e^{x+iy} + 1)^2} =
\begin{cases}
e^{- (1 - \alpha) (x+iy)} & x \rightarrow \infty \\
e^{(1 + \alpha) (x+iy)} & x \rightarrow - \infty \\
\end{cases}
\end{align*}
So that
\begin{align*}
\oint_C \dfrac{e^{\alpha z} e^z}{(e^z + 1)^2} dz & = \int_{-\infty}^\infty \dfrac{e^{\alpha x} e^x}{(e^x - 1)^2} dx - e^{i 2 \alpha \pi} \int_{-\infty + i 2 \pi}^{\infty + i 2 \pi} \dfrac{e^{\alpha x} e^x}{(e^x - 1)^2} dx
\nonumber \\
& = (1 - e^{i 2 \alpha \pi}) \int_{-\infty}^\infty \dfrac{e^{\alpha x} e^x}{(e^x + 1)^2} dx .
\end{align*}
Which rearranged is
\begin{align*}
\int_{-\infty}^\infty \dfrac{e^{\alpha x} e^x}{(e^x + 1)^2} dx & = \frac{2 \pi i}{1 - e^{i 2 \alpha \pi}} \frac{1}{2 \pi i} \oint_C \dfrac{e^{\alpha z} e^z}{(e^z + 1)^2} dz
\nonumber \\
& = \frac{2 \pi i}{1 - e^{i 2 \alpha \pi}} Res_{z=\pi i} [f(z)] .
\end{align*}
We calculate the residue. Expand about pole, $z_0 = i \pi$:
\begin{align*}
\frac{1}{(e^z + 1)^2} & = \frac{1}{(e^{z_0 + (z-z_0)} - e^{z_0})^2}
\nonumber \\
& = e^{-2 z_0} \dfrac{1}{[(z-z_0) + \frac{1}{2!} (z-z_0)^2+ \cdots]^2}
\nonumber \\
& = e^{-2 z_0} \dfrac{1}{(z-z_0)^2 [(1 + \frac{1}{2!} (z-z_0)+ \cdots]^2}
\nonumber \\
& = e^{-2 z_0} \dfrac{1}{(z-z_0)^2 [1 + (z-z_0) + \cdots]}
\nonumber \\
& = e^{-2 z_0} \dfrac{1}{(z-z_0)^2} [(1 - (z-z_0) + \cdots]
\nonumber \\
& = e^{-2 z_0} \dfrac{1}{(z-z_0)^2} - e^{-2 z_0} \dfrac{1}{z-z_0} + \cdots
\end{align*}
Using this we can find the residue:
\begin{align*}
\frac{e^{\alpha z} e^z}{(e^z + 1)^2} & = e^{- 2 z_0} \dfrac{ e^{(\alpha + 1) z_0 + (\alpha + 1) (z-z_0)} }{ (z-z_0)^2 } - e^{- 2 z_0} \dfrac{ e^{(\alpha + 1) z_0} }{ z-z_0 } + \cdots
\nonumber \\
& = e^{- 2 z_0} \dfrac{ e^{(\alpha + 1) z_0} [1 + (\alpha + 1) (z-z_0) + \cdots] }{ (z-z_0)^2 } - e^{- 2 z_0} \dfrac{ e^{(\alpha + 1) z_0} }{ z-z_0 } + \cdots
\nonumber \\
& = e^{- 2 z_0} \dfrac{ e^{(\alpha + 1) z_0} }{ (z-z_0)^2 } + e^{- 2 z_0} \dfrac{ \alpha e^{(\alpha + 1) z_0} }{ z-z_0 } + \cdots
\end{align*}
So that
\begin{align*}
\int_{-\infty}^\infty \dfrac{e^{\alpha x} e^x}{(e^x + 1)^2} dx & = \frac{2 \pi i}{1 - e^{i 2 \alpha \pi}} \cdot \alpha e^{i (\alpha + 1) \pi}
\nonumber \\
& = \frac{\alpha \pi}{\sin( \alpha \pi)} .
\end{align*}
Using this in $(1)$,
\begin{align*}
\sum_{n=1}^\infty \dfrac{1}{n^{2k}} & = \frac{1}{2 \cdot (2k)!} \frac{1}{1- 2^{-2k+1}} \left. \frac{\partial^{2k}}{\partial \alpha^{2k}} \frac{\alpha \pi}{\sin( \alpha \pi)} \right|_{\alpha=0} \qquad (2)
\end{align*}
This is the general formula I mentioned at the beginning.
Case: $k=2$
We specialise to the case $k=2$. We expand in $\alpha$,
\begin{align*}
\frac{\alpha \pi}{\sin( \alpha \pi)} & = \frac{1}{ 1 - \frac{1}{3!} (\alpha \pi)^2 + \frac{1}{5!} (\alpha \pi)^4 - \cdots }
\nonumber \\
& = 1 + \frac{1}{6} \alpha^2 \pi^2 - \frac{1}{120} (\alpha \pi)^4 + \frac{1}{6^2} (\alpha \pi)^4 + \cdots
\nonumber \\
& = 1 + \frac{1}{6} \alpha^2 \pi^2 + \frac{7}{360} \alpha^4 \pi^4 + \cdots
\end{align*}
Using this in (2),
\begin{align*}
\zeta (4) = \sum_{n=1}^\infty \dfrac{1}{n^4} & = \frac{1}{2 \cdot 4!} \frac{1}{1- 2^{-3}} \frac{7}{15} \pi^2
\nonumber \\
& = \frac{\pi^2}{90}
\end{align*}
General case:
We have the series expansion of $x \pi \csc x \pi$ in terms of Bernoulli numbers:
\begin{align*}
\frac{ x \pi }{ \sin( x \pi) } = \sum_{n=0}^\infty \dfrac{ 2 (2^{2n-1} - 1) (-1)^{n+1} \pi^{2n} B_{2n} }{ (2n)! } x^{2n} .
\end{align*}
Using this in $(2)$,
\begin{align*}
\zeta (2k) = \sum_{n=1}^\infty \dfrac{1}{n^{2k}} & = \frac{1}{2 \cdot (2k)!} \frac{1}{1- 2^{-2k+1}} \left. \frac{\partial^{2k}}{\partial \alpha^{2k}} \frac{\alpha \pi}{\sin( \alpha \pi)} \right|_{\alpha=0}
\nonumber \\
& = \frac{1}{2 (1- 2^{-2k+1})} \cdot \dfrac{ 2 (2^{2k-1} - 1) (-1)^{n+1} \pi^{2k} B_{2k} }{ (2k)! }
\nonumber \\
& = \dfrac{ (-1)^{k+1} B_{2k} (2\pi)^{2k} }{ 2(2k)! }
\end{align*}