This question regards understanding some of the steps in the derivation of the identity for $\sum_{k=1}^{n}\cot^4\left({k\pi\over 2n+1}\right)$
It is shown 1 that using Vieta's formula that
$\sum_{k=1}^{n}\cot^4\left({k\pi\over 2n+1}\right)=\frac{1}{45}n(2n-1)(4n^2+10n-9)$
Since $\cot\left({k\pi\over 2n+1}\right)=\frac{i (\omega^k+1)}{\omega^k-1} .\tag{1}$ It follows that $\sum_{k=1}^{n}\cot^4\left({k\pi\over 2n+1}\right)=\sum_{k=1}^{n}(\frac{ \omega^k+1}{\omega^k-1})^4 .\tag{2}$
The source 1 goes on to say $P(x)=\frac{x^{2n+1}-1}{x-1} .\tag{3}$
will have roots $\omega,\omega^2..\omega^{2n}$ but I cannot understand why and how (4) is derived using $y=\frac{x+1}{x-1},x=\frac{y+1}{y-1}$?
$P(x)=\frac{(\frac{y+1}{y-1})^{2n+1}-1}{\frac{y+1}{y-1}-1} .\tag{4}$