(Edit: The earlier proof was flawed. Here is my revised version.)
This is a supplement of the proof of @user1551. In his proof, he proved the claim for $F=\mathbb{R}$ or $\mathbb{C}$. I generalized this claim to the field with characteristic $=0$ as the following.
Let $k$ be a field, $A\in k^{n\times n}$ is traceless. If $\mathrm{char}(k)=0$, $A$ is similar to some matrix with zero diagonal.
Proof
If $\mathrm{char}(k)=0$.
We first show that for any $2\times 2$ matrix with two different diagonals, it is similar to some matrix with the first diagonal being zero. Take any matrix $\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$ with $a\neq d$. We are finding some invertible matrix
$\begin{pmatrix}
e & f\\
g& h
\end{pmatrix}$, such that:
$$\begin{pmatrix}
e & f\\
g& h
\end{pmatrix} \cdot \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}\cdot \begin{pmatrix}
h & -f\\
-g& e
\end{pmatrix} $$
has zero diagonal. This simplifies to (after a tedious calculation)
$$
f(ch-dg)+e(ah-bg)=0 \quad (*)
$$
(a) If $b\neq 0$, then we take $f=0$, and equation $(*)$ simplifies to $e(ah-bg)=0 $. Take $h=b,g=a$, then equation $(*)$ holds, and
$\begin{pmatrix}
e & f\\
g& h
\end{pmatrix}=\begin{pmatrix}
e & 0\\
a & b
\end{pmatrix}$, we then take any non-zero $e$ to make it invertible.
(b) If $c\neq 0$, then we take $e=0$, and equation $(*)$ simplifies to $f(ch-dg)=0$. Take $g=c, h=d$, then equation $(*)$ holds, and
$\begin{pmatrix}
e & f\\
g& h
\end{pmatrix}=\begin{pmatrix}
0 & f \\
c & d
\end{pmatrix}$, we then take any non-zero $f$ to make it invertible.
(c)If $b=c=0$, then equation $(*)$ simplifies to $aeh-dfg=0$. Take any matrix $\begin{pmatrix}
e & f\\
g& h
\end{pmatrix}$ with $eh=d,fg=a$, then equation $(*)$ holds, and its determinant $d-a\neq 0$.
Now, take any traceless matrix $A\in k^{n\times n}$. Since $\operatorname{char}(k)= 0$, there exists $2$ different diagonals, say the first two. Then
by the previous discussion, there exists $P\in GL_n(k)$, such that
$$\begin{pmatrix}
P^{-1} &0 \\
0 & I_{n-2}
\end{pmatrix} \cdot A \cdot \begin{pmatrix}
P &0 \\
0 & I_{n-2}
\end{pmatrix} $$
is a matrix whose first diagonal being zero. We do this again for the remaining $(n-1)\times (n-1)$ principal submatrix, and so on. $\square$
(Note: If $\operatorname{char}(k)=p\neq 0$, the matrix $I_p$ is clearly a counter-example. )