Let $M_n(F)$ be the matrix space on the field $F$, $f$ be the linear map from $M_n(F)$ to $F$ such that $f(I)=n$, where $I$ is the identitiy matrix. Furthermore, $f(AB)=f(BA)$ for any $A,B\in M_n(F)$. Show that $f=tr$, where $tr(A)=\sum_{i=1}^n a_{ii}$ for $A=(a_{ij}).
I do not have any idea....