$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\int_{-1}^{1}
\pars{1 + x \over 1 - x}^{\nu}\pars{x^{2} - x} \,\dd x}
\\[5mm] = & \
\int_{-1}^{1}\pars{1 + x}^{\nu}\pars{1 - x}^{-\nu}
\bracks{\pars{1 - x} - \pars{1 + x}\pars{1 - x}}\dd x
\\[5mm] = & \!\!\!
\int_{-1}^{1}\!\!\!
\pars{1 + x}^{\nu}\,\pars{1 - x}^{1 - \nu}\,\,\dd x\! -\!
\int_{-1}^{1}
\pars{1 + x}^{1 + \nu}\,\pars{1 - x}^{1 - \nu}\,\,\dd x
\\[5mm] = & \!\!
\int_{0}^{1}\bracks{\pars{1 + x}^{\nu}\,\pars{1 - x}^{1 - \nu} + \pars{1 + x}^{1 - \nu}\,\pars{1 - x}^{\nu}}\dd x
\\ & \!\!\!\!\!\!-
\int_{0}^{1}\bracks{\pars{1 + x}^{1 + \nu}\,\pars{1 - x}^{1 - \nu} + \pars{1 + x}^{1 - \nu}\,\pars{1 - x}^{1 + \nu}}\dd x
\\[5mm] = &\ 4\on{B}\pars{1 + \nu,2 -\nu} - 8\on{B}\pars{2 + \nu,2 - \nu}\label{1}\tag{1}
\end{align}
where $\ds{\on{B}}$ is the $\ds{\it Beta\ Function}$. The last result is found with identity $\ds{\bf 8.38}.6$ of
G & R
In addition, with Beta-recurrence and Euler Reflection Formula:
$$
\left\{\begin{array}{rcl}
\ds{\on{B}\pars{1 + \nu, 2 - \nu}} & \ds{=} &
\ds{\on{B}\pars{1 + \nu, 1 - \nu}{1 - \nu \over 2} =
\on{B}\pars{\nu, 1 - \nu}\,\nu\,{1 - \nu \over 2}}
\\ & \ds{=} & \ds{{\pi \over \sin\pars{\pi\nu}}{\nu\pars{1 - \nu} \over 2}}
\\[3mm] \ds{\on{B}\pars{2 + \nu,2 - \nu}} & \ds{=} &
\ds{\on{B}\pars{1 + \nu,2 - \nu}{1 + \nu \over 3} =
\on{B}\pars{\nu,2 - \nu}{\nu \over 2}{1 + \nu \over 3}}
\\ & \ds{=} & \ds{\on{B}\pars{\nu,1 - \nu}\pars{1 - \nu}{\nu \over 2}{1 + \nu \over 3}}
\\ & \ds{=} &
\ds{{\pi \over \sin\pars{\pi\nu}}{\pars{1- \nu}\nu\pars{1 + \nu} \over 6}}
\end{array}\right.
$$
Therefore, (\ref{1}) becomes
\begin{align}
& \color{#44f}{\int_{-1}^{1}
\pars{1 + x \over 1 - x}^{\nu}\pars{x^{2} - x} \,\dd x} =
\bbx{\color{#44f}{{2\pi \over 3\sin\pars{\pi\nu}}
\nu\pars{1 -\nu}\pars{1 - 2\nu}}} \\ &
\end{align}