10

While exploring possible applications for this new trick, I stumbled upon an entire family of integrals that "always" yield $a\pi^n$, where $a$ is an algebraic number and $n$ is a natural number. The following integral captivated me greatly:

$\boxed{\int_{-1}^{1} \frac{125}{12}\sqrt[10]{\frac{1 + x}{1 - x}} (x^2 - x) \, dx = \color{red}{\phi}\color{blue}{\pi}}\tag{1}$.

The family:

$\int_{-1}^{1}(\frac{1 + x}{1 - x} )^{\frac{1}{2}}(x^2 - x) dx = 0$.

$\int_{-1}^{1} (\frac{1 + x}{1 - x})^{\frac{1}{4}} (x^2 - x) dx = \frac{\pi}{8\sqrt{2}}$.

$\int_{-1}^{1} (\frac{1 + x}{1 - x})^{\frac{1}{6}} (x^2 - x) dx = \frac{10\pi}{81}$.

$\int_{-1}^{1} \left(\frac{1 + x}{1 - x}\right)^{\frac{1}{8}} (x^2 - x) \, dx = \frac{\sqrt{3}}{100} \left(\frac{22787}{479}\right)^{\frac{1}{4}} \pi^2.$

$\int_{-1}^{1}(\frac{1 + x}{1 - x} )^{\frac{1}{10}} (x^2 - x) dx = \frac{12}{125}\phi\pi$.

$\int_{-1}^{1}(\frac{1 + x}{1 - x})^{\frac{1}{12}} (x^2 - x) dx = \frac{15455288\pi}{94257441}$.

The family seems to beg for a generalization. Is such a thing possible?

  • 1
    Perhaps, you mean $a\pi$ where $a$ is algebraic. Every integral can be written as $a\pi$ for some real $a$. Also, in that case, the integral with $1/8$ is not $a\pi$, but rather $a\pi^2$. – ultralegend5385 Mar 28 '24 at 05:42
  • @ultralegend5385: Thanks. I think I fixed it. – Emmanuel José García Mar 28 '24 at 06:17
  • @EmmanuelJoséGarcía -- The result you show for $\displaystyle\int_{-1}^1(\frac{1+x}{1-x})^{\frac{1}{12}} (x^2-x)\ dx = \frac{15455288\pi}{94257441}$ is fine with precision of pocket calculators. According the answer shown below, it is $\displaystyle\frac{55\pi}{324\sqrt{2}(\sqrt{3}-1)}$. – m-stgt Apr 25 '24 at 12:09
  • @m-stgt: Thank you. It wouldn't surprise me, as the values have been conjectured with the help of Wolfram Alpha. What surprises me is the intention of some to close my question even though I have already edited it to be a single question instead of two. – Emmanuel José García Apr 25 '24 at 14:03
  • 1
    @EmmanuelJoséGarcía -- The type of content management I observe is sometimes quite questionable. I doubt it will help to get my queries answered. – m-stgt Apr 25 '24 at 15:21

2 Answers2

12

Let's concider $$I(\alpha)=\int_{-1}^1\left(\frac{1+x}{1-x}\right)^\alpha x(x-1)dx;\,\,-1<\alpha<2$$ Making the substitution $\frac{1+x}{1-x}=t$ $$I(\alpha)=4\int_0^\infty\frac{t^\alpha}{(1+t)^4}(1-t)dt$$ Making the substitution $x=\frac1{1+t}$ $$=4\int_0^1(1-x)^\alpha x^{2-\alpha}dx-4\int_0^1(1-x)^{\alpha+1}x^{1-\alpha}dx$$ Integrating the second term by parts $$=4\frac{1-2\alpha}{2-\alpha}\int_0^1(1-x)^\alpha x^{2-\alpha}dx=4\frac{1-2\alpha}{2-\alpha}B\big(1+\alpha;3-\alpha\big)=\frac23\frac{1-2\alpha}{2-\alpha}\Gamma(1+\alpha)\Gamma(3-\alpha)$$ Using the Euler formula for Gamma-function $$I(\alpha)=\frac23\frac{1-2\alpha}{2-\alpha}\alpha(2-\alpha)(1-\alpha)\Gamma(\alpha)\Gamma(1-\alpha)=\frac{2\pi}3\frac{\alpha(1-\alpha)(1-2\alpha)}{\sin\pi\alpha}$$ You can quickly check the answer, for example, at $\alpha=\frac16$ and get $\displaystyle\frac{10\pi}{3^4}$

Svyatoslav
  • 20,502
  • 2
    This is elegant and beautiful. Thanks for posting this kind of answers. Cheers :-) – Claude Leibovici Mar 28 '24 at 08:36
  • @Claude Leibovici , thank you for your kind words. Have a nice day! – Svyatoslav Mar 28 '24 at 08:41
  • 1
    (+1) Wow! Due to this, we can also see that when $\alpha$ is rational, the answer is $\pi$ times some algebraic number. But this also means that the answer in the original post is wrong (I manually checked that the answer given by the formula in this post does not match). – ultralegend5385 Mar 28 '24 at 12:43
  • 1
    @ultralegend5385, yes, the answer is in general $\pi$ times some algebraic number. I have some doubt about the answer at $\alpha=\frac18$, but the answers at $\alpha=\frac12, ,\frac14,,\frac16$ are correct – Svyatoslav Mar 28 '24 at 12:56
  • 1
    I guess your answer is however correct, given that $\sin\frac\pi{10}=\frac{\sqrt 5-1}4$ :) https://www.wolframalpha.com/input?i=%5Csin%28%5Cpi%2F10%29 – Svyatoslav Mar 28 '24 at 16:37
3

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{{\displaystyle #1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} & \color{#44f}{\int_{-1}^{1} \pars{1 + x \over 1 - x}^{\nu}\pars{x^{2} - x} \,\dd x} \\[5mm] = & \ \int_{-1}^{1}\pars{1 + x}^{\nu}\pars{1 - x}^{-\nu} \bracks{\pars{1 - x} - \pars{1 + x}\pars{1 - x}}\dd x \\[5mm] = & \!\!\! \int_{-1}^{1}\!\!\! \pars{1 + x}^{\nu}\,\pars{1 - x}^{1 - \nu}\,\,\dd x\! -\! \int_{-1}^{1} \pars{1 + x}^{1 + \nu}\,\pars{1 - x}^{1 - \nu}\,\,\dd x \\[5mm] = & \!\! \int_{0}^{1}\bracks{\pars{1 + x}^{\nu}\,\pars{1 - x}^{1 - \nu} + \pars{1 + x}^{1 - \nu}\,\pars{1 - x}^{\nu}}\dd x \\ & \!\!\!\!\!\!- \int_{0}^{1}\bracks{\pars{1 + x}^{1 + \nu}\,\pars{1 - x}^{1 - \nu} + \pars{1 + x}^{1 - \nu}\,\pars{1 - x}^{1 + \nu}}\dd x \\[5mm] = &\ 4\on{B}\pars{1 + \nu,2 -\nu} - 8\on{B}\pars{2 + \nu,2 - \nu}\label{1}\tag{1} \end{align} where $\ds{\on{B}}$ is the $\ds{\it Beta\ Function}$. The last result is found with identity $\ds{\bf 8.38}.6$ of G & R In addition, with Beta-recurrence and Euler Reflection Formula: $$ \left\{\begin{array}{rcl} \ds{\on{B}\pars{1 + \nu, 2 - \nu}} & \ds{=} & \ds{\on{B}\pars{1 + \nu, 1 - \nu}{1 - \nu \over 2} = \on{B}\pars{\nu, 1 - \nu}\,\nu\,{1 - \nu \over 2}} \\ & \ds{=} & \ds{{\pi \over \sin\pars{\pi\nu}}{\nu\pars{1 - \nu} \over 2}} \\[3mm] \ds{\on{B}\pars{2 + \nu,2 - \nu}} & \ds{=} & \ds{\on{B}\pars{1 + \nu,2 - \nu}{1 + \nu \over 3} = \on{B}\pars{\nu,2 - \nu}{\nu \over 2}{1 + \nu \over 3}} \\ & \ds{=} & \ds{\on{B}\pars{\nu,1 - \nu}\pars{1 - \nu}{\nu \over 2}{1 + \nu \over 3}} \\ & \ds{=} & \ds{{\pi \over \sin\pars{\pi\nu}}{\pars{1- \nu}\nu\pars{1 + \nu} \over 6}} \end{array}\right. $$ Therefore, (\ref{1}) becomes \begin{align} & \color{#44f}{\int_{-1}^{1} \pars{1 + x \over 1 - x}^{\nu}\pars{x^{2} - x} \,\dd x} = \bbx{\color{#44f}{{2\pi \over 3\sin\pars{\pi\nu}} \nu\pars{1 -\nu}\pars{1 - 2\nu}}} \\ & \end{align}

Felix Marin
  • 94,079