Check @ParamanandSingh's initial conjecture, and show that it is NOT a telescoping series. Use this Reference Convension (RC) for Jacobi elliptic function.
Let $a_n=\text{sn}^2(u_n,k=\sqrt2)$, for short, we suppress the index $k$ and denote $\text{sn}(u_n)=\text{sn}(u_n,k=\sqrt2)$, the recursion equation becomes:
$$\text{sn}(u_{n+1})=\frac{1-\sqrt{1-\text{sn}^2(u_n)}}{1+\sqrt{1-2\text{sn}^2(u_n)}}$$
Use the property (23), (24) in RC, we get
$$\text{sn}^2(u_{n+1})=\frac{1-\text{cn}(u_n)}{1+\text{dn}(u_n)}$$
Use (69) in RC, we get
$$\text{sn}^2(u_{n+1})=\text{sn}^2(\frac{u_{n}}2)\Longrightarrow u_n=\frac{1}{2}u_{n-1}\Rightarrow \boxed{a_n=\text{sn}^2(\frac{u_{0}}{2^n})}$$
where $$u_0=\int_0^{\pi/4}\frac1{\sqrt{1-2\sin^2x}}dx=\int_0^{\pi/4}\cos^{-\frac12}(2x)dx=\frac14B\left(\frac12,\frac14\right)=\frac1{4\sqrt{2\pi}}\Gamma^2(\frac14)$$
the series becomes
$$S=\sum_{n=0} 2^n \text{sn}^2(\frac{u_n}2)\text{sn}(u_{n})$$
Use (69)
$$S=\sum_{n=0} 2^n\frac{1-\text{cn}(u_n)}{1+\text{dn}(u_n)} \text{sn}(u_{n})=\sum_{n=0} \frac{2^n\text{sn}(u_{n})}{1+\text{dn}(u_n)}-\frac{2^{n-1}\cdot2\text{sn}(u_n)\text{cn}(u_{n})}{1+\text{dn}(u_n)}\tag{*}$$
Use (63)
$$2\text{sn}(u_n)\text{cn}(u_{n})=\frac{\text{sn}(u_{n-1})(1-2\text{sn}^4(u_n))}{\text{dn}(u_n)}$$
and (65)
$$1+\text{dn}(u_{n-1})=\frac{2-4\text{sn}^2(u_n)}{1-2\text{sn}^4(u_n)}$$
Plug into (*), we get
$$S=\sum_{n=0} \frac{2^n\text{sn}(u_{n})}{1+\text{dn}(u_n)}-\frac{2^{n-1}\cdot\text{sn}(u_{n-1})}{1+\text{dn}(u_{n-1})}\cdot\frac{2(1-2\text{sn}^2(u_{n}))}{\text{dn}(u_n)(1+\text{dn}(u_n))}$$
Use (24)
$$S=\sum_{n=0} \frac{2^n\text{sn}(u_{n})}{1+\text{dn}(u_n)}-\frac{2^{n-1}\cdot\text{sn}(u_{n-1})}{1+\text{dn}(u_{n-1})}\cdot\color{red}{\frac{2\text{dn}(u_{n})}{1+\text{dn}(u_n)}}\tag{**}$$
Numerically checked, (*)$=$(**).
For $n=1, n=2, n=3$, the first half of (**) are
$$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\sum_{n=1}^3 \frac{2^n\text{sn}(u_{n})}{1+\text{dn}(u_n)}=0.658552 + 0.655704 + 0.655526$$
the second half of (**) are
$$\sum_{n=1}^3 \frac{2^{n-1}\cdot\text{sn}(u_{n-1})}{1+\text{dn}(u_{n-1})}\cdot\color{red}{\frac{2\text{dn}(u_{n})}{1+\text{dn}(u_n)}}=0.553774 + 0.623159 + 0.646898$$
Unfortunately, it is NOT a telescoping series, due to the annoying red term.