Let $k\in(0,1)$ and the incomplete elliptic integral integral $E(u, k) $ be defined by $$E(u, k) =\int_{0}^{u}\operatorname {dn} ^2(t,k)\,dt\tag{1}$$ where $\operatorname {dn} (u, k) $ represents one of the Jacobian elliptic functions. When the value of $k$ is evident from context the parameter $k$ is dropped and one writes $E(u)$ instead of $E(u, k) $.
The function $E(u) $ satisfies the following addition formula $$E(u) +E(v) - E(u+v) =k^2\operatorname {sn} (u, k) \operatorname {sn} (v, k) \operatorname {sn} (u+v, k) \tag{2}$$ where $\operatorname {sn} (u, k) $ is another Jacobian elliptic function.
Dr. Bruce C. Berndt mentions in his Ramanujan Notebooks vol 3 that the above formula $(2)$ is equivalent to $$\frac{qf(-a, - q^2/a)f(-b,-q^2/b)f(-ab,-q^2/ab)} {abf(-aq, - q/a) f(-bq, - q/a) f(-abq, - q/ab) }=\frac{\varphi(-q)} {f^{3}(-q^2)}\sum_{n=1}^{\infty}\frac{q^n} {1-q^{2n}}\left(\frac{1}{a^nb^n}-\frac{1}{a^n}-\frac{1}{b^n}+a^n+b^n-a^nb^n\right) \tag{3}$$ where $|q|<1$ and \begin{align*} f(a, b) & =\sum_{n\in\mathbb {Z}} a^{n(n+1)/2}b^{n(n-1)/2},|ab|<1\\ \varphi(q) &= f(q, q) =\sum_{n\in \mathbb {Z}} q^{n^2}=\vartheta_{3}(q)\\ f(-q)&=f(-q, - q^2)=\prod_{n=1}^{\infty} (1-q^n) \end{align*} are Ramanujan's theta functions.
The formula $(2)$ is famous and proved in both Jacobi's Fundamenta Nova and Whittaker & Watson's A Course of Modern Analysis.
How does one show that it is equivalent to formula $(3)$?
My own try is to deal with the fraction $\varphi(-q) /f^{3}(-q^2)$. We have via the theory of theta functions and elliptic integrals $$\varphi(-q) =\vartheta_{4}(q)=\sqrt{\frac{2k'K}{\pi}}$$ where $$K=K(k) =\int_{0}^{\pi/2}\frac{dx}{\sqrt{1-k^2\sin^2x}},k'=\sqrt{1-k^2}$$ and $$q^{1/12}f(-q^2)=q^{1/12}\prod_{n=1}^{\infty} (1-q^{2n})=2^{-1/3}\sqrt{\frac{2K}{\pi}}(kk')^{1/6}$$ so that $$q^{1/4}f^{3}(-q^2)=\frac{K}{\pi}\sqrt{\frac{2kk'K}{\pi}}$$ Thus we have $$\frac{\varphi(-q)} {f^3(-q^2)}=\frac{q^{1/4}}{\sqrt{k}}\frac{\pi}{K}$$ Next we have the product expansion $$\operatorname {sn} (u, k) = \dfrac{2q^{1/4}}{\sqrt{k}}\sin z\prod_{n = 1}^{\infty}\dfrac{1 - 2q^{2n}\cos 2z + q^{4n}}{1 - 2q^{2n - 1}\cos 2z + q^{4n - 2}}, z=\frac{\pi u} {2K}$$ which can be written as $$\frac{2q^{1/4}}{\sqrt{k}}\sin z\prod_{n=1}^{\infty}\frac{(1-q^{2n}e^{2iz})(1-q^{2n}e^{-2iz})}{(1-q^{2n-1}e^{2iz})(1-q^{2n-1}e^{-2iz})}\tag{4}$$ Using the Jacobi triple product (written in terms of Ramanujan theta function) $$f(a,b)=\prod_{n=1}^{\infty} (1-(ab)^n)(1+a(ab)^{n-1})(1+b(ab)^{n-1})\tag{5}$$ and the expression $(4)$ for $\operatorname{sn } (u, k)$ (and similar expressions for $\operatorname {sn} (v, k)$ and $\operatorname {sn} (u+v, k) $) it appears that the RHS of $(2)$ can be written like LHS of $(3)$ (via substitution $a=e^{2iz},b=e^{2iw},w= \dfrac{\pi v} {2K}$). However I don't see how to handle the LHS of $(2)$ (or RHS of $(3)$).
The Weierstrass $\zeta$ function of $\Bbb{Z+tZ}$ is up to convergence and regularization factors
$\sum_{n,m} \frac{1}{z+nt+m}=\sum_n \frac{1}{e^{2i \pi (z+nt)}-1}= \sum_{l \ge 1} \frac{e^{-2i \pi mz}-e^{2i \pi mz} }{e^{2i \pi mt}-1}$
– reuns Apr 05 '19 at 12:50