Let $g,\bar{g}$ be two Riemannian metrics on a smooth $n$-manifold $M$ and consider the difference between the Levi-Civita connections of $g,\bar{g}$: $$W:=\nabla-\overline{\nabla}.$$
As indicated in Introduction to Riemannian Manifolds by John M. Lee, $W$ is a $(1,2)$-tensor field on $M$. And with a local frame $\{v_1,\ldots,v_n\}$, we see the components $W_{ij}^k$ of $W$ are given by $$\nabla_{v_i}v_j-\overline{\nabla}_{v_i}v_j=W_{ij}^k v_k,$$ which implies $$W_{ij}^k=\Gamma_{ij}^k-\overline{\Gamma}_{ij}^k$$ with $\overline{\Gamma}_{ij}^k$ denoting the connection coefficients of $\bar{g}$ w.r.t. the given frame.
In our later discussion, the Riemann curvature tensor $\mathrm{Riem}$ of $g$ will be a covariant $4$-tensor field on $M$ defined so that for vector fields $X,Y,Z$, and $W$ on $M$, we have $$\mathrm{Riem}(X,Y,Z,W)=g(-\nabla_X\nabla_Y Z+\nabla_Y\nabla_X Z+\nabla_{[X,Y]}Z,W).$$ And locally, some functions $R_{ijk\ell}$ together yield $$\mathrm{Riem}=R_{ijk\ell}v^i\otimes v^j\otimes v^k\otimes v^\ell,$$ where $v^i$ is the $i$-th covector field in the local coframe dual to $\{v_1,\ldots,v_n\}$.
Up next, the Ricci curvature $\mathrm{Ric}$ of $g$ is defined to be the trace of the Riemann curvature tensor over the second and fourth components. If we denote the components of $\mathrm{Ric}$ by $R_{ij}$, then the definition amounts to $$R_{ij}=g^{k\ell}R_{ikj\ell}.$$
Now I'd like to ask why the Ricci curvatures of $g,\bar{g}$ are related by $$R_{ij}=\bar{R}_{ij}+(\overline{\nabla}_k W_{ij}^k-\overline{\nabla}_j W_{ki}^k)+(W_{k\ell}^k W_{ij}^\ell-W_{j\ell}^k W_{ik}^\ell).\tag{1}$$ I'm not so sure that $\overline{\nabla}_\ell W_{ij}^k$ symbolizes a component of $\overline{\nabla}W$ w.r.t. the given frame, but let's keep it that way for the moment. Anyway, to get the result, I began with a straightforward computation: $$\begin{align} R_{ij}&=g^{k\ell}R_{ikj\ell}\\ &=g^{k\ell}\mathrm{Riem}(v_i,v_k,v_j,v_\ell)\\ &=g^{k\ell}g\left(-\nabla_{v_i}(\Gamma_{kj}^\ell v_\ell)+\nabla_{v_k}(\Gamma_{ij}^\ell v_\ell)+\nabla_{[v_i,v_k]}v_j,v_\ell\right)\\ &=g^{k\ell}g\left(-\nabla_{v_i}((W_{kj}^\ell+\overline{\Gamma}_{kj}^\ell)v_\ell)+\nabla_{v_k}((W_{ij}^\ell+\overline{\Gamma}_{ij}^\ell)v_\ell)+c_{ik}^\ell\Gamma_{\ell j}^m v_m,v_\ell\right),\tag{2} \end{align}$$ where $c_{ij}^m$ are the functions defined by $$[v_i,v_j]=c_{ij}^m v_m.$$
As you can see, I was trying to bring in as many terms in (1) as possible, but I have one major concern: how do I get rid of $g$ and bring in $\bar{R}_{ij}$ in (2)?
Let's look at what we need to bring in $\bar{R}_{ij}$: $$\begin{align} \bar{R}_{ij}&=\bar{g}^{k\ell}\bar{R}_{ikj\ell}\\ &=\bar{g}^{k\ell}\overline{\mathrm{Riem}}(v_i,v_k,v_j,v_\ell)\\ &=\bar{g}^{k\ell}\bar{g}\left(-\overline{\nabla}_{v_i}(\overline{\Gamma}_{kj}^\ell v_\ell)+\overline{\nabla}_{v_k}(\overline{\Gamma}_{ij}^\ell v_\ell)+c_{ik}^\ell\overline{\Gamma}_{\ell j}^m v_m,v_\ell\right) \end{align}$$
It seems to be a wise decision to express (2) as $$R_{ij}=g^{k\ell}g\left(-\nabla_{v_i}(W_{kj}^\ell v_\ell)-\overline{\Gamma}_{kj}^\ell W_{i\ell}^m v_m\mathbf{-\overline{\nabla}_{v_i}(\overline{\Gamma}_{kj}^\ell v_\ell)}+\nabla_{v_k}(W_{ij}^\ell v_\ell)+\overline{\Gamma}_{ij}^\ell W_{k\ell}^m v_m\mathbf{+\overline{\nabla}_{v_k}(\overline{\Gamma}_{ij}^\ell v_\ell)}+c_{ik}^\ell W_{\ell j}^m v_m\mathbf{+c_{ik}^\ell\overline{\Gamma}_{\ell j}^m v_m},v_\ell\right).\tag{3}$$ As indicated by the boldfaced terms, we are pretty close to an extra $\bar{R}_{ij}$, but the question remains: how do I get rid of $g$? That is, how do I get from $g^{k\ell}g(\cdot,\cdot)$ to $\bar{g}^{k\ell}\bar{g}(\cdot,\cdot)$? Thank you.
Edit. Now I'm pretty sure that $\overline{\nabla}_\ell W_{ij}^k$ symbolizes a component of $\overline{\nabla}W$ w.r.t. the given frame, because I have successfully derived the coordinate representation of $\mathrm{Ric}$ in terms of the Christoffel symbols using (1).