Sorry if this is a silly question. I recently read the post: Relating the Ricci curvatures of two Riemannian metrics and wonder if there are any ways to relate the scalar curvature of two Riemannian metrics?
I tried to take the trace of the following equation $$R_{ij}=\bar R_{ij}+(\bar \nabla_kW_{ij}^k-\bar\nabla_jW_{ki}^k)+(W_{kl}^kW_{ij}^l-W_{jl}^kW_{ik}^l)$$ i.e., $$R_g=g^{ij}R_{ij}=g^{ij}\bar R_{ij}+g^{ij}(\bar \nabla_kW_{ij}^k-\bar\nabla_jW_{ki}^k)+g^{ij}(W_{kl}^kW_{ij}^l-W_{jl}^kW_{ik}^l).$$ But I am not sure how to proceed from here. Are there any well-known relation between two scalar curvatures with respect to two different metrics $g$ and $\bar g$ on the same manifold $M$?