3

Continuing from here: How does this expression follow algebraically from the last one?

The "new" system: \begin{align*} \dot S &= \Lambda - (\beta_1 S I_2 +\beta_2 S J+ \beta_3 S A )-\mu S \\ \dot I_1 &= p\beta_1 S I_2 +q\beta_2 S J +r \beta_3 S A +\xi_1 J -b_1 I_1\\ \dot I_2 &= (1-P)\beta_1 S I_2 +(1-q)\beta_2 S J+(1-r) \beta_3 S A +\epsilon I_1 +\xi_2 J -b_2 I_2\\ \dot J &= p_1 I_2 -b_3 J\\ \dot A &= p_2 J - b_4 A \end{align*}

Reproduction number:

\begin{align} \mathcal{R}_0 &= \frac{\Lambda\left[ \beta_1 b_3 b_4 \left( \epsilon p +b_1(\left( 1-p\right)\right)+\beta_2 p_1 b_4 \left( \epsilon q +b_1(\left( 1-q\right)\right)+\beta_3 p_1 p_2 \left( \epsilon r +b_1(\left( 1-r\right)\right) \right]}{\mu b_4 \left[ b_1 b_2 b_3 - p_1\left( \epsilon \xi_1 +b_1 \xi_2 \right) \right] } \end{align}

Equilibrium point:

\begin{align} S^* &= \frac{\Lambda}{\mu \mathcal{R}_0}\\[2ex] I_1^* &= \frac{1}{b_1}\left[ p \beta_1 \frac{\Lambda b_3 b_4}{\left(\beta_1 b_3 b_4+\beta_2 p_1 b_4+\beta_3 p_1 p_2 \right)J^* +\mu b_4 p_1}\right.\\[1ex] &\quad\;\;+\left. q \beta_2 \frac{\Lambda b_4 p_1}{\left(\beta_1 b_3 b_4+\beta_2 p_1 b_4+\beta_3 p_1 p_2 \right)J^* +\mu b_4 p_1}\right.\\[1ex] &\quad\;\;+\left. r \beta_3 \frac{\Lambda p_1 p_2}{\left(\beta_1 b_3 b_4+\beta_2 p_1 b_4+\beta_3 p_1 p_2 \right)J^* +\mu b_4 p_1}+\xi_1\right]J^*\\[2ex] I_2^* &= \frac{b_3}{p_1}J^*\\[2ex] J^*&= \frac{\mu b_4 p_1 }{\beta_1 b_3 b_4 +\beta_2 p_1 b_4 +\beta_3 p_1 p_2}\left(\mathcal{R}_0-1\right)\\[2ex] A^*&=\frac{p_2}{b_4}J^* \end{align}

Theorem: If $p=q=r$ and $\mathcal{R}_0 >1$ then the above equilibrium point is globally stable.

To prove this:

Define the following Lyapunov function

\begin{align} V &= S-S^* \ln S+ B\left( I_1-{I_1}^* \ln I_1\right) +C\left(I_2-{I_2}^* \ln I_2\right) + D\left( J -J^* \ln J\right)\\ &+E\left(A-A^* \ln A\right). \end{align}

The derivative of $V$

\begin{align*} \dot V &=\left(1-\frac{S^*}{S}\right) \dot S + B\left(1-\frac{{I_1}^*}{I_1} \right)\dot I_1 + C\left(1-\frac{{I_2}^*}{I_2}\right)\dot I_2+D\left(1-\frac{J^*}{J} \right)\dot J\\[1ex] &+ E\left(1-\frac{A^*}{A}\right) \dot A \end{align*}

where: \begin{align*} B &= \frac{\epsilon}{\epsilon p +b_1(1-p)}\\[1ex] C&= \frac{b_1}{\epsilon p +b_1(1-p)}\\[1ex] D &= \frac{b_1 b_2}{p_1[\epsilon p +b_1(1-p)]} -\frac{\beta_1 S^*}{p_1}\\[1ex] E &= \frac{\beta_3 S^*}{b4} \end{align*}

We get to the following:

\begin{align*} \dot V &= -\mu S^* \frac{\left(1-x\right)^2}{x}+ \left[ \beta_1 S^* {I_2}^*+\beta_2 S^* J^*+ \beta_3 S^* A^* +B p\beta_1 S^* {I_2}^* + B q \beta_2 S^* J^*\right.\\[1ex] &+\left. B r \beta_3 S^* A^*+ B \xi_1 J^*+ C(1-p)\beta_1 S^* {I_2}^*+C(1-q)\beta_2 S^* J^*+C(1-r)\beta_3 S^* A^*\right.\\[1ex] &+\left. C \epsilon {I_1}^*+C \xi_2 J^*+D p_1 {I_2}^*+ E p_2 J^* \right]-x\left[ C(1-p)\beta_1 S^* {I_2}^* \right] -\frac{xz}{y}B p\beta_1 S^* {I_2}^*\\[1ex] & -\frac{xu}{y}B q \beta_2 S^* J^* -\frac{xv}{y}B r \beta_3 S^* A^*-\frac{u}{y}B \xi_1 J^* - \frac{xu}{z}C(1-q)\beta_2 S^* J^*\\[1ex] &- \frac{xv}{z}C(1-r)\beta_3 S^* A^* - \frac{y}{z}C \epsilon {I_1}^* - \frac{u}{z}C \xi_2 J^*-\frac{z}{u}D p_1 {I_2}^*-\frac{u}{v}E p_2 J^*\\[1ex] &- \frac{1}{x}\left[\beta_1 S^* {I_2}^*+ \beta_2 S^* J^*+\beta_3 S^* A^*\right]\\[2ex] \end{align*}

How do we get this expression to the 'final form' like in the question I referred at the beginning of this question?

  • This is definitely worthy of a separate question. :) ... If you'll pardon the indelicacy: Is there a source against which to double-check your transcription? ... The target expression has an $A^$, but your equilibrium point expressions list $A_2^$; are these supposed to be the same? ... Finally, "simplify this expression similar to that one" is a bit vague; simplification (and similarity) is often in the eye of the beholder. Do you have a candidate final form that you'd like verified? – Blue Dec 09 '21 at 15:45
  • @Blue This question arises from the same transcript as the previous question. I don't know why the 2 is there.. I will edit it. There isn't a final candidate form, rather this is what I'm trying to accomplish. This is what I was initially asking in the original question aha! –  Dec 09 '21 at 16:11

1 Answers1

2

The "final form" expression in the previous question leverages the arithmetic-geometric mean inequality to guarantee that signs of various $xyzu$ expressions are non-positive (which seems to important to the argument in the cited article). AM-GM tells us that $$\sqrt[n]{x_1x_2\cdots x_n}\;\leq\;\frac{x_1+x_2+\cdots+x_n}{n}$$ When, in particular, we have terms whose product is $1$, we can write $$n\leq x_1+x_2+\cdots+x_n\quad\to\quad n-x_1-x_2-\cdots-x_n \leq 0 \tag{1}$$ So, the article's authors augment certain expressions with terms like $1-1/x$, $1-y/z$, $1-z/u$ as needed, dutifully also subtracting-off the terms for balance, to get the form $(1)$. For instance, since $\frac{xz}{y}\cdot\frac{1}{x}\cdot\frac{y}{z}=1$, we may be inspired to write $$\begin{align} 1-\frac{xz}{y} \quad&=\quad 1-\frac{xz}{y}+\color{red}{1-\frac1x}+\color{blue}{1-\frac{y}{z}} \quad - \left(\color{red}{1-\frac1x}\right)-\left(\color{blue}{1-\frac{y}{z}}\right) \\[0.5em] &=\quad\underbrace{3-\frac{xz}{y}-\frac1x-\frac{y}{z}}_{\text{non-positive, by $(1)$}} \quad\underbrace{- \left(\color{red}{1-\frac1x}\right)-\left(\color{blue}{1-\frac{y}{z}}\right)}_{\text{hope these cancel elsewhere}} \tag2 \end{align}$$ It's a clever strategy, and it works surprisingly well: all those subtracted-off bits actually do cancel. The strategy works in this case, too.


To start, let's make a first pass at grouping terms:

$$\begin{align} \dot V = &-\mu S^* \frac{(1-x)^2}{x} \\[0.5em] &+ B \left(\begin{array}{l} \phantom{+}p\beta_1 S^* I_2^* \left(1-\frac{xz}{y}\right) \\ + q \beta_2 S^* J^*\left(1-\frac{xu}{y}\right) \\[1ex] + r \beta_3 S^* A^*\left(1-\frac{xv}{y}\right)\\ + \xi_1 J^* \left(1-\frac{u}{y}\right)\end{array}\right) + C\left(\begin{array}{l} \phantom{+}(1-p)\beta_1 S^* I_2^* (1-x)\\ + (1-q)\beta_2 S^* J^* \left(1-\frac{xu}{z}\right)\\ + (1-r)\beta_3 S^* A^* \left(1-\frac{xv}{z}\right)\\[1ex] + \epsilon I_1^*\left(1- \frac{y}{z}\right) \\ + \xi_2 J^*\left(1- \frac{u}{z}\right) \end{array}\right)\\[0.5em] &+D p_1 I_2^* \left(1-\frac{z}{u}\right) + E p_2 J^* \left(1-\frac{u}{v}\right) \\[0.5em] &+\left(\beta_1 S^* I_2^*+ \beta_2 S^* J^*+\beta_3 S^* A^*\right)\left(1-\frac1x\right) \end{align}\tag{3}$$

As our second pass, we'll augment the $xyzuv$ factors into form $(1)$ with $1-\frac1x$, $1 - \frac{u}{v}$, $1-\frac{z}{u}$, and $1-\frac{y}{z}$. We'll gather the subtracted-off multiples together with already-existing terms having those factors.

\begin{align*} \dot V = &-\mu S^* \frac{(1-x)^2}{x} \tag{4.0}\\[0.5em] &+ B \left(\begin{array}{l} \phantom{+}p\beta_1 S^* I_2^* \left(3-\frac{xz}{y}-\frac1x-\frac{y}{z}\right) \\ + q \beta_2 S^* J^*\left(4-\frac{xu}{y}-\frac{1}{x}-\frac{y}{z}-\frac{z}{u}\right) \\[1ex] + r \beta_3 S^* A^*\left(5-\frac{xv}{y}-\frac{1}{x}-\frac{y}{z}-\frac{z}{u}-\frac{u}{v}\right)\\ + \xi_1 J^* \left(3-\frac{u}{y}-\frac{z}{u}-\frac{y}{z}\right)\end{array}\right) \tag{4.1}\\[0.5em] &+ C\left(\begin{array}{l} \phantom{+}(1-p)\beta_1 S^* I_2^* \left(2-x-\frac1x\right)\\ + (1-q)\beta_2 S^* J^* \left(3-\frac{xu}{z}-\frac1x-\frac{z}{u}\right)\\ + (1-r)\beta_3 S^* A^* \left(4-\frac{xv}{z}-\frac1x-\frac{z}{u}-\frac{u}{v}\right) \\[1ex] + \xi_2 J^*\left(2- \frac{u}{z}-\frac{z}{u}\right) \end{array}\right) \tag{4.2} \\[0.5em] &+\left(1-\frac1x\right)S^*\left(\begin{array}{l} \phantom{-}\beta_1 I_2^*+ \beta_2 J^*+\beta_3 A^* \\ -Bp\beta_1 I_2^* - Bq \beta_2 J^* - Br \beta_3 A^* \\ -C(1-p)\beta_1 I_2^*- C(1-q)\beta_2 J^* \\-C(1-r)\beta_3 A^* \end{array}\right) \tag{4.3} \\[0.5em] &+\left(1 - \frac{u}{v}\right)\left(\begin{array}{l} \phantom{-}E p_2 J^* \\ - Br \beta_3 S^* A^* - C (1-r)\beta_3 S^* A^* \end{array}\right) \tag{4.4}\\[0.5em] &+\left(1-\frac{z}{u}\right)\left(\begin{array}{l} \phantom{-}D p_1 I_2^* \\ - Bq \beta_2 S^* J^* - Br \beta_3 S^* A^* - B\xi_1 J^* \\ - C (1-q)\beta_2 S^* J^* - C(1-r)\beta_3 S^* A^* - C\xi_2 J^* \end{array}\right) \tag{4.5}\\[0.5em] &+\left(1-\frac{y}{z}\right)\left(\begin{array}{l} \phantom{-}C\epsilon I_1^* \\ -Bp\beta_1 S^* I_2^*-Bq \beta_2 S^* J^*-Br \beta_3 S^* A^*-B\xi_1 J^*\end{array}\right) \tag{4.6} \end{align*}

From here, the goal is to show each of the sub-expressions $(4.3)$-$(4.6)$ vanish under the assumption $p=q=r$. Note that this assumption, along with the definitions of $B$ and $C$, implies $$B p + C (1-p) = B q + C (1-q) = B r + C (1-r ) = 1 \tag{$\star$}$$ Also, $$\begin{align} R_0 &= \frac{\Lambda ( \epsilon p + b_1 (1 - p))( \beta_1 b_3 b_4 + \beta_2 b_4 p_1 + \beta_3 p_1 p_2)}{ \mu b_4 (b_1 b_2 b_3 - p_1 (\epsilon \xi_1 + b_1 \xi_2))} \\[1em] \implies \quad S^* &= \frac{ b_4 (C b_2 b_3 - p_1 (B\xi_1 + C \xi_2))}{\beta_1 b_3 b_4 + \beta_2 b_4 p_1 + \beta_3 p_1 p_2} \tag{$\star\star$} \end{align}$$ Moreover, $$\begin{align} I_1^* &= J^* \frac{1}{b_1} \left(\frac{p \beta_1 b_3 b_4 + q \beta_2 b_4 p_1 + r \beta_3 p_1 p_2}{b_4 p_1} S^* + \xi_1\right) \tag{$\star\star\star$} \end{align}$$ Relation $(\star)$ makes light work of $(4.3)$: $$\begin{align} &\phantom{-}(\beta_1 I_2^* + \beta_2 J^* + \beta_3 A^*) \\ &-(B p + C (1 - p)) \beta_1 I_2^* - (B q + C (1 - q)) \beta_2 J^* - (B r + C (1 - r)) \beta_3 A^* \\[0.5em] =&\phantom{-}(\beta_1 I_2^* + \beta_2 J^* + \beta_3 A^*) \\ &-1\cdot \beta_1 I_2^* - 1\cdot \beta_2 J^* - 1\cdot \beta_3 A^* \\[0.5em] =&\phantom{-}0 \end{align} \tag{5}$$ And just a little more effort handles $(4.4)$: $$\begin{align} &\phantom{-}E p_2 J^* - (B r + C (1 - r)) \beta_3 S^* A^* \\[0.5em] =&\phantom{-}\frac{\beta_3}{b_4} S^* \cdot p_2 J^* - 1\cdot\beta_3 S^* \cdot \frac{p_2}{b_4} J^*\\[0.5em] =&\phantom{-}0 \end{align} \tag{6}$$ Then, $(4.5)$ is a bit more involved, but vanishes by $(\star\star)$: $$\begin{align} &\phantom{-}D p_1 I_2^* \\ &- (B q + C (1 - q)) \beta_2 S^* J^* -(B r + C (1 - r)) \beta_3 S^* A^* -B \xi_1 J^* -C \xi_2 J^*\\[0.5em] =&\phantom{-}J^* \left(Db_3 - 1\cdot \beta_2 S^* -1\cdot \beta_3 S^* \frac{p_2}{b_4} -B \xi_1 -C \xi_2 \right) \\ =&\phantom{-}J^* \left( \frac{1}{p_1}\left(C b_2 - \beta_1 S^*\right) b_3 - \beta_2 S^* - \beta_3 S^* \frac{p_2}{b_4} - B \xi_1 - C \xi_2 \right) \\ =&\phantom{-}J^* \frac{1}{b_4p_1}\left( b_4 ( C b_2 b_3 - p_1(B \xi_1 +C \xi_2)) - S^* ( \beta_1 b_3 b_4 + \beta_2 b_4 p_1 +\beta_3 p_1 p_2 ) \right) \\ =&\phantom{-}0 \end{align} \tag{7}$$ Finally, $(\star\star\star)$, and the observation that $C\epsilon/b_1 = B$, brings $(4.6)$ home: $$\begin{align} &\phantom{-}C \epsilon I_1^* - B\left( p \beta_1 S^* I_2^* + q \beta_2 S^* J^* + r \beta_3 S^* A^* + \xi_1 J^* \right) \\[0.5em] =&\phantom{-} C \frac{\epsilon}{b_1} (\cdots) J^* - B \left( p \beta_1 S^* \frac{b_3}{p_1}J^* + q \beta_2 S^* J^* + r \beta_3 S^* \frac{p_2}{b_4}J^* + \xi_1 J^* \right)\\[0.5em] =&\phantom{-} B J^*\left( (\cdots) - \left(\frac{1}{b_4p_1} S^* ( p \beta_1 b_3 b_4 + q \beta_2 b_4 p_1 + r \beta_3 p_1 p_2 ) + \xi_1 \right)\right) \\[0.5em] =&\phantom{-}0 \end{align} \tag{8}$$

Consequently, sub-expressions $(4.0)$-$(4.2)$ alone would appear to constitute an appropriate counterpart of the "final form" expression from the previous question.

(The reader is invited to apply the augmentation strategy and show that the subtracted-off bits cancel explicitly, instead of resorting to brute-force symbol-crunching for Mathematica (as I did), to verify the equality in the previous question.)

Blue
  • 83,939
  • This is very nice, however I have destroyed the notation(I changed it to what I prefer). Now it’s muddled up.. I will adjust it on Monday, hopefully you can rewrite your answer. I will start a bounty and reward it you :) I may have some questions, so hopefully you can answer! All the best Sir, take care in the meantime! –  Dec 10 '21 at 18:03
  • I have done the edit, please check if anything changed in your solution. I have also added the bounty as promised :) Also, from your solution above, I don't understand the augmentation part, can you explain in more detail? –  Dec 13 '21 at 12:31
  • I may sound foolish but how did you do the grouping? I don't understand where the "$D$" terms went..? –  Dec 13 '21 at 12:57
  • @Math: The two $D$ terms, which together become $Dp_1(1-\frac{z}{u})$, were absorbed into $M_3(1-\frac{z}{u})$; likewise the $E$ terms with $M_2(1-\frac{u}{v})$, and I think all the other miscellaneous terms went into $M_1(1-\frac1x)$. You can see $Dp_1$ and $Ep_2$ in the expressions defining $M_3$ and $M_2$. ... I hope to be able to take a look at the question revisions (and also explain the augmentation stuff better) later today. – Blue Dec 13 '21 at 13:15
  • The $M_4$ expression, if you don't mind, could you write it in full for completeness? Ok, never mind, I just noticed, that it will ruin the neatness. –  Dec 13 '21 at 15:12
  • 1
    Thank you very much for your answers to both my questions. –  Dec 14 '21 at 11:47