I was reading this paper:
Global stability for an HIV/AIDS epidemic model with different latent stages and treatment
Everything is understood apart from on page 7 of the pdf (page 1486 in the document). How does the author algebraically go from the second line to the last line for the equation of $\dot V$?
I don't understand how he "generates" more terms in the last line compared to the one preceding it.
EDIT: For those who cannot access the paper
The system: \begin{align*} \dot S &= \Lambda - (\beta_1 S I_2 +\beta_2 S J )-\mu S \\ \dot I_1 &= p\beta_1 S I_2 +q\beta_2 S J +\xi_1 J -b_1 I_1\\ \dot I_2 &= (1-P)\beta_1 S I_2 +(1-q)\beta_2 S J +\epsilon I_1 +\xi_2 J -b_2 I_2\\ \dot J &= p_1 I_2 -b_3 J\\ \dot A &= p_2 J - b_4 A \end{align*} Equilibrium point: \begin{align*} S^* &= \frac{\Lambda}{\mu \mathcal{R}_0}\\ I_1^* &= \frac{1}{b_1}\left[ p \beta_1 \frac{\Lambda b_3 }{\left(\beta_1 b_3 +\beta_2 p_1 \right)J^* +\mu p_1}\right. +\left. q \beta_2 \frac{\Lambda p_1}{\left(\beta_1 b_3 +\beta_2 p_1 \right)J^* +\mu p_1}+\xi_1\right]J^*\\ I_2^* &= \frac{b_3}{p_1}J^*\\ J^*&= \frac{\mu p_1 }{\beta_1 b_3 +\beta_2 p_1}\left(\mathcal{R}_0-1\right)\\ A^*&=\frac{p_2}{b_4}J^* \end{align*}
Theorem: If $p=q$ and $\mathcal{R}_0 >1$ then the above equilibrium point is globally stable.
Proof:
Define Lyapunov function: $$V = S-S^* \ln S+ B( I_1-{I_1}^* \ln I_1) +C(I_2-{I_2}^* \ln I_2) + D( J -J^* \ln J)$$
Derivative is given by:
$$\dot V =\left(1-\frac{S^*}{S}\right) \dot S + B\left(1-\frac{{I_1}^*}{I_1} \right)\dot I_1 + C\left(1-\frac{{I_2}^*}{I_2}\right)\dot I_2+D\left(1-\frac{J^*}{J} \right)\dot J$$
The author then does substitutions i.e replaces $\Lambda$, $b_1$, $b_2$, $b_3$ by making the original system equal to $0$. He finds the constants $B$, $C$ and $D$ by killing the variable co-efficients, giving:
\begin{align*}
B &= \frac{\epsilon}{\epsilon p +b_1(1-p)}\\
C&= \frac{b_1}{\epsilon p +b_1(1-p)}\\
D &= \frac{b1 b_2}{p_1[\epsilon p +b_1(1-p)]} -\frac{\beta_1 S^*}{p_1}
\end{align*}
Next he does another substitution $ x=\dfrac{S}{S^*}$, $y=\dfrac{I_1}{I_1^*}$, $z=\dfrac{I_2}{I_2^*}$ and $u=\dfrac{J}{J^*}$ to which he arrives at: \begin{align*} \dot V &= -\mu S^* \frac{\left(1-x\right)^2}{x}+ \left[ \beta_1 S^* {I_2}^*+\beta_2 S^* J^*+B p\beta_1 S^* {I_2}^* + B q \beta_2 S^* J^*\right.\\ &+ B \xi_1 J^*+ C(1-p)\beta_1 S^* {I_2}^*+C(1-q)\beta_2 S^* J^*\\ &+\left. C \epsilon {I_1}^*+C \xi_2 J^*+D p_1 {I_2}^*\right]-x\left[ C(1-p)\beta_1 S^* {I_2}^* \right] -\frac{xz}{y}B p\beta_1 S^* {I_2}^*\\ & -\frac{xu}{y}B q \beta_2 S^* J^* -\frac{u}{y}B \xi_1 J^* - \frac{xu}{z}C(1-q)\beta_2 S^* J^*\\ &- \frac{y}{z}C \epsilon {I_1}^* - \frac{u}{z}C \xi_2 J^*-\frac{z}{u}D p_1 {I_2}^*\\ &- \frac{1}{x}\left[\beta_1 S^* {I_2}^*+ \beta_2 S^* J^*\right]\\ &= -\mu S^* \frac{\left(1-x\right)^2}{x} + \frac{b_1}{\epsilon p +b_1(1-p)}(1-p)\beta_1 S^* I_2^* \left(2-x-\frac{1}{x}\right)\\ &+\frac{b_1}{\epsilon p +b_1(1-p)}\xi_2 J^*\left(2-\frac{u}{z}-\frac{z}{u}\right)\\ &+\frac{b_1}{\epsilon p +b_1(1-p)}(1-q)\beta_2 S^* J^* \left(3-\frac{1}{x}-\frac{xu}{z}-\frac{z}{u}\right)\\ &+\frac{\epsilon}{\epsilon p +b_1(1-p)}p \beta_1 S^* I_2^*\left(3-\frac{1}{x}-\frac{xz}{y}-\frac{y}{z}\right)\\ &+\frac{\epsilon}{\epsilon p +b_1(1-p)} q\beta_2 S^* J^*\left(4-\frac{1}{x}-\frac{y}{z}-\frac{z}{u}-\frac{xu}{y} \right)\\ &+ \frac{\epsilon}{\epsilon p +b_1(1-p)}\xi_1 J^*\left(3-\frac{y}{z}-\frac{z}{u}-\frac{u}{y} \right) \end{align*}
I don't understand how he "generates" more terms in the last line compared to the one preceding it.