Interestingly, I'm facing the same question on my optimization course, and maybe the same class as the proposer.
Let $A = \left\{\pm \mathbf{u} \mathbf{u}^{T} \mid\|\mathbf{u}\|=1\right\}$. First we may guess that $\text{conv}A$ is symmetric with some eigenvalue properties. The rank of $\mathbf{u} \mathbf{u}^{T}$ is $1$, so$$\lambda_1 =\text{tr}(\mathbf{u} \mathbf{u}^{T}) = \text{tr}{(\mathbf{u}^T \mathbf{u}) = \|u\|} = 1, \\\lambda_i = 0, 2\le i \le n.$$ Its nuclear norm $||\mathbf{u} \mathbf{u}^{T}||_* = \Sigma|\lambda_i| = \lambda_1 = 1 $(for symmetric matrices nuclear norm equals to the sum of the absolute eigenvalues).
We can also find that $\mathbf{0} = \mathbf{u} \mathbf{u}^{T} + (-\mathbf{u} \mathbf{u}^{T})\in \text{conv}A$ with nuclear norm 0. Therefore we guess that $$\text{conv}A = \left\{M\in \mathbb{R}^{n\times n}\mid\| M^T = M , \|M\|_* \le 1\right\}. $$
We prove it by two steps.
Step 1: $B\subseteq\text{conv}A$
$\forall M \in B,M=M^T$, so we can decompose $$ M = Q\Lambda Q^T, QQ^T=I, \Lambda = \text{diag}{\{\lambda_1,\lambda_2,\dots,\lambda_n\}}.$$ Let $$P = \{\mathbf{p}_1^T,\mathbf{p}_2^T,\dots, \mathbf{p}_n^T\}^T, \mathbf{p}_i \in \mathbb{R}^n, \|\mathbf{p}_i\|_2 = 1,$$
we get \begin{align}M =& \Sigma_{i=1}^n\lambda_i \mathbf{p}_i \mathbf{p}_i^T \\
=& \Sigma_{i=1}^n|\lambda_i| \text{sgn}(\lambda_i)\mathbf{p}_i \mathbf{p}_i^T\\
=& \Sigma_{i=1}^n|\lambda_i| \text{sgn}(\lambda_i)\mathbf{p}_i \mathbf{p}_i^T + \frac{1-\Sigma_{i=1}^n|\lambda_i|}{2}(\mathbf{u}\mathbf{u}^{T} + (-\mathbf{u} \mathbf{u}^{T})),
\end{align}
which means $M$ is a convex combination of elements in $A$, so $B\subseteq\text{conv}A$
Step 2: $B$ is convex
The nuclear norm $\|\cdot \|_*$ is a convex function, so $$\forall M_1,M_2 \in B, \forall \theta \in [0,1], M_0 = \theta M_1 + (1-\theta)M_2,$$ we have $$M_0^T = \theta M_1^T + (1-\theta)M_2^T = \theta M_1 + (1-\theta)M_2 = M_0 \\
\|M_0\|_* = \|\theta M_1 + (1-\theta)M_2\|_* \le \theta \|M_1\|_* + (1-\theta)\|M_2\|_* \le \theta + (1-\theta) = 1,$$ we got $M_0\in B$, so it is convex.
Now we know that $B$ is convex and is a subset of $\text{conv}A$, of course it is exact $\text{conv}A$.