Ordinarily, matrices are used for linear maps. Linear maps take $(0,0)$ to itself, so they can't describe this map. There are two ways you could get around this:
(1) You can write the map in the form
$$\begin{bmatrix} x\\y \end{bmatrix} \longrightarrow \begin{bmatrix} a&b \\ c&d \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} e\\f \end{bmatrix}$$
for some constants $a$, $b$, $c$, $d$, $e$, $f$.
I don't want to do a homework problem, so I'll answer a different question: Let's think about rotation of $60^{\circ}$ counterclockwise around the point $(2,3)$. As you suggest, make the change of variables $(X,Y) = (x-2, y-3)$. The matrix of the rotation in $(X,Y)$ coordinates is $\left[ \begin{smallmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \\ \end{smallmatrix} \right]$. In $(x,y)$ coordinates, we have
$$\begin{bmatrix} x\\y \end{bmatrix} \longrightarrow \begin{bmatrix} 1/2 & - \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \\ \end{bmatrix} \begin{bmatrix} x-2 \\ y-3 \end{bmatrix} + \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 1/2 & - \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \\ \end{bmatrix}\begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} 1+3 \sqrt{3}/2 \\ 3/2 - \sqrt{3} \end{bmatrix}.$$
(2) The group of rigid symmetries of the plane can be described with $3 \times 3$ matrices: Describe the symmetry $\vec{x} \mapsto Q \vec{x} + \vec{b}$ by the $3 \times 3$ block matrix
$$\left[ \begin{array}{c|c} Q & \vec{b} \\ \hline 0 & 1 \end{array} \right] .$$
This group preserves the set of vectors of the form $(x,y,1)$, and acts on them by rigid motions. So, inside this group, we can use the usual conjugation formula to change coordinates. Repeating my examples of a $60^{\circ}$ rotation around $(2,3)$, we get
$$\begin{bmatrix} 1&0&2 \\ 0&1&3 \\ 0&0&1 \\ \end{bmatrix}
\begin{bmatrix} 1/2 & - \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0&0&1 \end{bmatrix}
\begin{bmatrix} 1&0&2 \\ 0&1&3 \\ 0&0&1 \\ \end{bmatrix}^{-1} =
\begin{bmatrix} 1/2 & - \sqrt{3}/2 & 1+3 \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 & 3/2-\sqrt{3} \\ 0&0&1 \end{bmatrix}.$$