To rotate vector around any point by some angle it says to rotate this vector by this angle around a tail of the vector.
Let $R^{\alpha}(\vec{a})$ be a rotation of $\vec{a}$ by $\alpha$ and $AA_1B_2B$, $BB_1C_2C$, $CC_1D_2D$ and $DD_1A_2A$ be our squares.
Thus, we need to prove that $$R^{90^{\circ}}(\vec{SQ})=\vec{RP}.$$
Indeed, $$R^{90^{\circ}}(\vec{SQ})=R^{90^{\circ}}\left(\vec{SD}+\vec{DR}+\vec{RC}+\vec{CQ}\right)=\vec{SA}+\vec{RC}+\vec{RD}+\vec{QB}$$ and it's enough to prove that:
$$\vec{RC}+\vec{CQ}+\vec{QB}+\vec{BP}=\vec{SA}+\vec{RC}+\vec{RD}+\vec{QB}$$ or
$$\vec{CQ}+\vec{BP}=\vec{SA}+\vec{RD}$$ or
$$\vec{DR}+\vec{CQ}+\vec{BP}+\vec{AS}=\vec{0},$$ which is true because
$$\sqrt2R^{45^{\circ}}\left(\vec{DR}+\vec{CQ}+\vec{BP}+\vec{AS}\right)=\vec{DC}+\vec{CB}+\vec{BA}+\vec{AD}=\vec{0}.$$