Let $\alpha$ and $\beta$ be the two roots of the polynomial $x^2-x-1$. Observe that $\alpha\beta=-1$. Then,
$$a\alpha^{17}+b\alpha^{16}+1=0$$
and
$$a\beta^{17}+b\beta^{16}+1=0\,.$$
This means
$$a\alpha+b=-\frac{1}{\alpha^{16}}=-\left(-\frac{1}{\alpha}\right)^{16}=-\beta^{16}\,.$$
Similarly,
$$a\beta+b=-\alpha^{16}\,.$$
Consequently,
$$(\alpha-\beta)\,a=\left(\alpha^{16}-\beta^{16}\right)\text{ or }a=\left(\frac{\alpha^{16}-\beta^{16}}{\alpha-\beta}\right)=F_{16}\,,$$
where $F_k$ is the $k$-th Fibonacci number (i.e., $F_0=0$, $F_1=1$, and $F_k=F_{k-1}+F_{k-2}$ for all integers $k$).
In the same manner,
$$a-b\beta=a+\frac{b}{\alpha}=-\frac{1}{\alpha^{17}}=\beta^{17}$$
and
$$a-b\alpha=a+\frac{b}{\beta}=-\frac{1}{\beta^{17}}=\alpha^{17}\,,$$
whence
$$(\alpha-\beta)\,b=-\left(\alpha^{17}-\beta^{17}\right)\,.$$
Thus,
$$b=-\left(\frac{\alpha^{17}-\beta^{17}}{\alpha-\beta}\right)=-F_{17}\,.$$
In general, if $n$ is a positive integer and $ax^{n+1}+bx^n+1\in\mathbb{R}[x]$ is divisible by $x^2-x-1$, then
$$a=(-1)^n\,F_n\text{ and }b=(-1)^{n+1}\,F_{n+1}\,.$$
Even more generally, let $K$ be an arbitrary field, and $p$ and $q$ any elements of $K$ such that $q\neq 0$. Suppose that $ax^{n+1}+bx^n+1\in K[x]$ is divisible by $x^2+px+q$. Then,
$$a=\frac{1}{q^n}\,f_n(p,q)\text{ and }b=-\frac{1}{q^n}\,f_{n+1}(p,q)\,,$$
where $f_0(p,q):=0$, $f_1(p,q):=1$, and $$f_k(p,q)+p\,f_{k-1}(p,q)+q\,f_{k-2}(p,q)=0$$ for all $k\in\mathbb{Z}$. The proof is very much the same (except for the case $p^2=4q$, which has to be dealt with separately).