If $x,y,z \in \mathbb{R^+}$ such that $x+y+z=3$. Prove the inequality $\sqrt x+\sqrt y+\sqrt z\ge xy+yz+zx$.
My work: We have
$$3(x+y+z)=x^2+y^2+z^2+2(xy+yz+zx) \implies (xy+yz+zx)=\dfrac12(3x-x^2+3y-y^2+3z-z^2)$$
So, we have to prove, $\sqrt x+\sqrt y+\sqrt z-\dfrac12(3x-x^2+3y-y^2+3z-z^2)\ge 0$
Now, I cannot proceed further. Please help.