I have a series of polynomials $P_j(x)$ given by the recursive formula $$P_{j+1}=\frac{e_j}{c_j}xP_{j}-\frac{f_j}{c_j}P_{j-1} $$ with $P_{-1} \equiv 0$, $P_0 \equiv 1$, where $$c_j = (j+1)(j+2\kappa+1),\\ e_j = (2j+2\kappa+1)(j+\kappa+1),\\ f_j = (j+\kappa)(j+\kappa+1),\\ j=0, \dots, N-1.$$
For $\kappa=\dfrac{1}{2}$ numerical results indicate that the roots of the polynomial $P_i$ are a subset of the roots of $P_{2i+1}$. E.g. The most simple case: $$P_1(x)=\frac{3}{2}x, \qquad x_1=0\\ P_2(x)=\frac{5}{2}x^2-\frac{5}{8}, \qquad x_{1,2}=\pm\frac{1}{2},\\ P_3(x)=\frac{35}{8}x^3-\frac{35}{16}x \qquad x_1=0, \ x_{2,3}=\pm-\frac{1}{\sqrt{2}}.$$
How can this be proved or disproved?