$\newcommand{\nest}{\operatorname{nest}}$Let's define a function $\nest(f, x, k)$, which takes a function $f$, an input $x$, and a non-negative integer $k$, and calls $f$ on $x$ repeatedly ($k$ times). For example, $$ \nest(f, x, 0) = x\\ \nest(f, x, 1)=f(x)\\ \nest(f, x, 2)=f(f(x))\\ \nest(f, x, 3)=f(f(f(x)))$$ Formally, this function can be written as $$ \nest(f, x, k)= \begin{cases} x & \text{if } k=0\\ \nest(f, f(x), k-1) & \text{otherwise} \end{cases}$$
For a given $k$ and a polynomial $p$, how can I find a function $f: \mathbb C \to \mathbb C$ such that $\nest(f, x, k)=p(x)$?
If it's not possible to do so in the general case, is it possible with $p(x)=c+x^2$?
