I've read at least two conventions for the sign of the codifferential. The first of them \begin{align} \delta &= (-1)^{k}\star^{-1}\operatorname{d}\star\\ &= (-1)^{kn+n+1}\operatorname{sgn}(g)\star\operatorname{d}\star\tag{1} \end{align} comes from
Let $M$ be a smooth orientable $n$-dimensional manifold with exterior derivative $\operatorname{d}:\Omega^{k}(M)\to\Omega^{k+1}(M)$, metric $g\in\Gamma(T^{0,2}M)$ and volume form $\mu\in\Omega^{n}(M)$.
One extends the metric $g$ to a metric $g_{(k)}$ on each $\Omega^{k}(M)$ requiring that for every $\alpha,\beta\in\Omega^{k}(M)$ we have $$g_{(k)}(\alpha,\beta) := \frac{1}{k!} g^{a_1b_1}\cdots g^{a_kb_k}\alpha_{a_1\dots a_k}\beta_{b_1\dots b_k}$$ and define the sign of the metric by $$\operatorname{sgn}(g) := g_{(n)}(\mu,\mu) = \pm 1$$ Then define the Hodge dual to be the operator $\Omega^{k}(M)\to\Omega^{n-k}(M)$ such that for every $\alpha,\beta\in\Omega^{k}(M)$ we have $$\alpha\wedge\star\beta = g_{(k)}(\alpha,\beta)\mu$$ which leads to $$\star\star = (-1)^{k(n-k)}\operatorname{sgn}(g)$$ and this implies $$\star^{-1} = (-1)^{k(n-k)}\operatorname{sgn}(g)\star$$
Now if we take the definition $$\delta\omega = (-1)^{k}\star^{-1}\operatorname{d}\star\omega$$ And we calculate the action of $\star^{-1}$ over $\operatorname{d}\star\omega$: If $\omega$ is of grade $k$, $\star\omega$ is of grade $n-k$ and $\operatorname{d}\star\omega$ is of grade $n-k+1$. Hence we have \begin{align} \star^{-1}\operatorname{d}\star\omega &= (-1)^{(n-k+1)(n-(n-k+1))}\star\operatorname{d}\star\omega\\ &= (-1)^{nk+n+k+1}\star\operatorname{d}\star\omega \end{align} Now, multiplying by $(-1)^{k}$ we get $$\delta\omega = (-1)^{kn+n+1}\operatorname{sgn}(g)\star\operatorname{d}\star\omega$$ Which is formula $(1)$. However, I've also encountered the formula \begin{align} \delta &= (-1)^{kn}\operatorname{sgn}(g)\star\operatorname{d}\star\tag{2} \end{align} Where does $(2)$ come from?