On the multiplicative group $\left((0,\infty),\dfrac{dt}{t}\right)$, use the convolution inequality $\|F\ast G\|_{L^{p}((0,\infty),dt/t)}\leq\|F\|_{L^{p}((0,\infty),dt/t)}\|G\|_{L^{p}((0,\infty),dt/t)}$, where $F(x)=|f(x)|x^{1-b/p}$ and $G(x)=x^{-b/p}\chi_{[1,\infty)}$, one has
\begin{align*}
\|G\|_{L^{1}((0,\infty),dt/t)}&=\int_{1}^{\infty}\dfrac{1}{t^{b/p+1}}dt=\dfrac{p}{b},\\
\|F\|_{L^{p}((0,\infty),dt/t)}&=\left(\int_{0}^{\infty}|f(t)|^{p}t^{(1-b/p)p}\dfrac{dt}{t}\right)^{1/p}\\
&=\left(\int_{0}^{\infty}|f(t)|^{p}t^{p-b-1}\right)^{1/p}.
\end{align*}
On the other hand,
\begin{align*}
F\ast G(x)&=\int_{0}^{\infty}|f(x/t)|(x/t)^{1-b/p}t^{-b/p}\chi_{[1,\infty)}(t)\dfrac{dt}{t}\\
&=\int_{1}^{\infty}|f(x/t)|(x/t)x^{-b/p}\dfrac{dt}{t}\\
&=x^{-b/p}\int_{0}^{x}|f(u)|u\cdot\dfrac{du}{u}\\
&=x^{-b/p}\int_{0}^{x}|f(u)|du,
\end{align*}
where we have used the transformation $u=x/t$, then $du/u=-dt/t$.
Further,
\begin{align*}
\|F\ast G\|_{L^{p}((0,\infty),dx/x)}&=\left(\int_{0}^{\infty}\left(\int_{0}^{x}|f(t)|dt\right)^{p}x^{-b}\dfrac{dx}{x}\right)^{1/p}\\
&=\left(\int_{0}^{\infty}\left(\int_{0}^{x}|f(t)|dt\right)^{p}x^{-b-1}dx\right)^{1/p}.
\end{align*}