Let $0<b<\infty$ and $1\le p<\infty$. Show that
$$\bigg(\int_{0}^{\infty}\bigg(\int_{x}^{\infty}|f(t)|dt\bigg)^{p}x^{b-1}dx\bigg)^{\frac{1}{p}}\le\frac{p}{b}\bigg(\int_{0}^{\infty}|f(t)|^{p}t^{p+b-1}dt\bigg)^{\frac{1}{p}}$$
Here is me attempt :
\begin{align} \bigg(\int_{0}^{\infty}\bigg(\int_{x}^{\infty} |f(t)|dt\bigg)^{p}x^{b-1}dx\bigg)^{\frac{1}{p}}&=\bigg(\int_{0}^{\infty}\bigg(\int_{x}^{\infty} x^{\frac{b-1}{p}}|f(t)|dt\bigg)^{p}dx\bigg)^{\frac{1}{p}}\\ &=\bigg(\int_{0}^{\infty}\bigg(\int_{1}^{\infty} x^{\frac{b-1}{p}+1}~|f(xt)|dt\bigg)^{p}dx\bigg)^{\frac{1}{p}}\\ &\le \int_{1}^{\infty}\bigg(\int_{0}^{\infty} x^{p+b-1}|f(xt)|^{p}dx\bigg)^{\frac{1}{p}}dt\\ &=\int_{1}^{\infty}\bigg(\int_{0}^{\infty} (xt)^{p+b-1}\frac{1}{t^{p+b-1}}|f(xt)|^{p}dx\bigg)^{\frac{1}{p}}dt\\ &=\int_{1}^{\infty}\bigg(\int_{0}^{\infty} \eta^{p+b-1}\frac{1}{t^{p+b-1}}|f(\eta)|^{p}~\frac{d\eta}{t}\bigg)^{\frac{1}{p}}dt\\ &=\int_{1}^{\infty}\bigg(\int_{0}^{\infty} \eta^{p+b-1}\frac{1}{t^{p+b}}|f(\eta)|^{p}~d\eta\bigg)^{\frac{1}{p}}dt\\ &=\int_{1}^{\infty}\frac{1}{t^{1+\frac{b}{p}}}~dt\bigg(\int_{0}^{\infty} \eta^{p+b-1}|f(\eta)|^{p}~d\eta\bigg)^{\frac{1}{p}}\\ &=\frac{p}{b}\bigg(\int_{0}^{\infty} \eta^{p+b-1}|f(\eta)|^{p}~d\eta\bigg)^{\frac{1}{p}}\\ \end{align}
,where $\eta=xt$ and hence $dx=\frac{d\eta}{t}$ and the first inequality is according to the integral form of Minkowski's inequality.
If you have the time , please checking my proof for validity. Any valuable suggestion and advice will be appreciated.