Another solution.
$\displaystyle J=\int^\infty_0\frac{\log\left(x^2+1 \right)\arctan^2x}{x^2}\,dx$
Perform integration by parts,
$\begin{align}
J&=-\left[\frac{\log\left(x^2+1 \right)\arctan^2 x}{x}\right]_0^{\infty}+\int_0^{\infty}\frac{1}{x}\left(\frac{2x\arctan^2 x}{1+x^2}+\frac{2\log\left(x^2+1 \right)\arctan x}{1+x^2}\right)\,dx\\
&=2\int_0^{\infty}\frac{\arctan^2 x}{1+x^2}\,dx+2\int_0^{\infty}\frac{\log\left(x^2+1 \right)\arctan x}{x(1+x^2)}\,dx\\
&=\frac{2}{3}\Big[\arctan^3 x\Big]_0^{\infty}+2\int_0^{\infty}\frac{\log\left(x^2+1 \right)\arctan x}{x(1+x^2)}\,dx\\
&=\frac{\pi^3}{12}+2\int_0^{\infty}\frac{\log\left(x^2+1 \right)\arctan x}{x(1+x^2)}\,dx\\
\end{align}$
In the following integral, perform the change of variable $x=\tan \theta$,
$\begin{align}
K&=\int_0^{\infty}\frac{\log\left(x^2+1 \right)\arctan x}{x(1+x^2)}\,dx\\
&=-2\int_0^{\frac{\pi}{2}}\theta\cot\theta\ln\left(\cos\theta\right)\,d\theta\\
\end{align}$
Perform integration by parts,
$\begin{align}
K&=-2\Big[\ln\left(\sin\theta\right)\theta\ln\left(\cos\theta\right)\Big]_0^{\frac{\pi}{2}}+2\int_0^{\frac{\pi}{2}}\ln\left(\sin\theta\right)\Big(\ln\left(\cos\theta\right)-\theta\tan \theta\Big)\,d\theta\\
&=2\int_0^{\frac{\pi}{2}}\ln\left(\sin\theta\right)\ln\left(\cos\theta\right)\,d\theta-2\int_0^{\frac{\pi}{2}}\theta\tan \theta\ln\left(\sin\theta\right)\,d\theta
\end{align}$
In the second integral perform the change of variable $x=\frac{\pi}{2}-\theta$,
$\begin{align}
K&=2\int_0^{\frac{\pi}{2}}\ln\left(\sin\theta\right)\ln\left(\cos\theta\right)\,d\theta-2\int_0^{\frac{\pi}{2}}\left(\frac{\pi}{2}-\theta\right)\cot \theta\ln\left(\cos\theta\right)\,d\theta\\
&=2\int_0^{\frac{\pi}{2}}\ln\left(\sin\theta\right)\ln\left(\cos\theta\right)\,d\theta-\pi\int_0^{\frac{\pi}{2}}\cot \theta\ln\left(\cos\theta\right)\,d\theta+2\int_0^{\frac{\pi}{2}}\theta\cot \theta\ln\left(\cos\theta\right)\,d\theta\\
&=2\int_0^{\frac{\pi}{2}}\ln\left(\sin\theta\right)\ln\left(\cos\theta\right)\,d\theta-\pi\int_0^{\frac{\pi}{2}}\cot \theta\ln\left(\cos\theta\right)\,d\theta-K
\end{align}$
Therefore,
$\begin{align}
K&=\int_0^{\frac{\pi}{2}}\ln\left(\sin\theta\right)\ln\left(\cos\theta\right)\,d\theta-\frac{\pi}{2}\int_0^{\frac{\pi}{2}}\cot \theta\ln\left(\cos\theta\right)\,d\theta
\end{align}$
Moreover,
$\begin{align}
\int_0^{\frac{\pi}{2}}\cot \theta\ln\left(\cos\theta\right)\,d\theta&=\int_0^{\frac{\pi}{4}}\cot \theta\ln\left(\cos\theta\right)\,d\theta+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\cot \theta\ln\left(\cos\theta\right)\,d\theta
\end{align}$
Perform the change of variable $x=\frac{\pi}{2}-\theta$ in the second integral,
$\begin{align}
\int_0^{\frac{\pi}{2}}\cot \theta\ln\left(\cos\theta\right)\,d\theta&=\int_0^{\frac{\pi}{4}}\cot \theta\ln\left(\cos\theta\right)\,d\theta+\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\sin\theta\right)\,d\theta\\
&=\left(\Big[\ln\left(\sin\theta\right)\ln\left(\cos\theta\right)\Big]_0^{\frac{\pi}{4}}+\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\sin\theta\right)\,d\theta\right)+\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\sin\theta\right)\,d\theta\\
&=\frac{1}{4}\ln^2 2+2\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\sin\theta\right)\,d\theta\\
&=\frac{1}{4}\ln^2 2+2\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\cos\theta\tan\theta\right)\,d\theta\\
&=\frac{1}{4}\ln^2 2+2\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\cos\theta\right)\,d\theta+2\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\tan\theta\right)\,d\theta\\
&=\frac{1}{4}\ln^2 2-\Big[\ln^2\left(\cos\theta\right)\Big]_0^{\frac{\pi}{4}}+2\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\tan\theta\right)\,d\theta\\
&=2\int_0^{\frac{\pi}{4}}\tan \theta\ln\left(\tan\theta\right)\,d\theta
\end{align}$
Perform the change of variable $x=\tan \theta$,
$\begin{align}
\int_0^{\frac{\pi}{2}}\cot \theta\ln\left(\cos\theta\right)\,d\theta&=\int_0^1 \frac{2x\ln x}{1+x^2}\,dx\\
&=\frac{1}{2}\int_0^1 \frac{2x\ln(x^2)}{1+x^2}\,dx\\
\end{align}$
Perform the change of variable $y=x^2$,
$\begin{align}
\int_0^{\frac{\pi}{2}}\cot \theta\ln\left(\cos\theta\right)\,d\theta&=\frac{1}{2}\int_0^1 \frac{\ln x}{1+x}\,dx\\
&=-\frac{1}{24}\pi^2
\end{align}$
$\begin{align}
L&=\int_0^{\frac{\pi}{2}}\ln\left(\sin\theta\right)\ln\left(\cos\theta\right)\,d\theta\\
&=\frac{1}{4}\int_0^{\frac{\pi}{2}}\left(\left(\ln\left(\sin\theta\right)+\ln\left(\cos\theta\right)\right)^2-\left(\ln\left(\sin\theta\right)-\ln\left(\cos\theta\right)\right)^2\right)\,d\theta\\
&=\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\sin\theta\cos\theta\right)\,d\theta-\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta\\
&=\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\frac{1}{2}\sin(2\theta)\right)\,d\theta-\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta
\end{align}$
In the first integral perform the change of variable $x=2\theta$,
$\begin{align}
L&=\frac{1}{8}\int_0^{\pi}\ln^2\left(\frac{1}{2}\sin\theta\right)\,d\theta-\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta\\
&=\frac{1}{8}\int_0^{\frac{\pi}{2}}\ln^2\left(\frac{1}{2}\sin\theta\right)\,d\theta+\frac{1}{8}\int_{\frac{\pi}{2}}^\pi\ln^2\left(\frac{1}{2}\sin\theta\right)\,d\theta-\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta\\
\end{align}$
In the second integral perform the change of variable $x=\pi-\theta$,
$\begin{align}
L&=\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\frac{1}{2}\sin\theta\right)\,d\theta-\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta\\
&=\frac{1}{8}\pi\ln^2 2+\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2(\sin \theta)\,d\theta-\frac{1}{2}\ln 2\int_0^{\frac{\pi}{2}}\ln(\sin \theta)\,d\theta-\frac{1}{4}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta\\
\end{align}$
$\begin{align}
M&=\int_0^{\frac{\pi}{2}}\ln^2(\sin \theta)\,d\theta\\
&=\int_0^{\frac{\pi}{2}}\ln^2(\tan\theta\cos \theta)\,d\theta\\
&=\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta+\int_0^{\frac{\pi}{2}}\ln^2\left(\cos\theta\right)\,d\theta+2\int_0^{\frac{\pi}{2}}\ln\left(\tan\theta\right)\ln\left(\cos\theta\right)\,d\theta\\
&=\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta+\int_0^{\frac{\pi}{2}}\ln^2\left(\cos\theta\right)\,d\theta+2\int_0^{\frac{\pi}{2}}\ln\left(\sin \theta\right)\ln\left(\cos \theta\right)\,d\theta-2\int_0^{\frac{\pi}{2}}\ln^2\left(\cos \theta\right)\,d\theta\\
&=\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta+2L-\int_0^{\frac{\pi}{2}}\ln^2\left(\cos\theta\right)\,d\theta
\end{align}$
In the second integral perform the change of variable $x=\frac{\pi}{2}-\theta$,
$\begin{align}
M&=\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta+2L-M
\end{align}$
Therefore,
$\begin{align}
M&=\frac{1}{2}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta+L
\end{align}$
Therefore,
$\begin{align}
L&=\frac{1}{8}\pi\ln^2 2-\frac{1}{8}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta-\frac{1}{2}\ln 2\int_0^{\frac{\pi}{2}}\ln(\sin \theta)\,d\theta+\frac{1}{4}L
\end{align}$
Thus,
$\begin{align}
L&=\frac{1}{6}\pi\ln^2 2-\frac{1}{6}\int_0^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta-\frac{2}{3}\ln 2\int_0^{\frac{\pi}{2}}\ln(\sin \theta)\,d\theta\\
&=\frac{1}{6}\pi\ln^2 2-\frac{1}{6}\int_0^{\frac{\pi}{4}}\ln^2\left(\tan\theta\right)\,d\theta-\frac{1}{6}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\ln^2\left(\tan\theta\right)\,d\theta-\frac{2}{3}\ln 2\int_0^{\frac{\pi}{2}}\ln(\sin \theta)\,d\theta\\
\end{align}$
In the second integral perform the change of variable $x=\frac{\pi}{2}-\theta$,
$\begin{align}
L&=\frac{1}{6}\pi\ln^2 2-\frac{1}{3}\int_0^{\frac{\pi}{4}}\ln^2\left(\tan\theta\right)\,d\theta-\frac{2}{3}\ln 2\int_0^{\frac{\pi}{2}}\ln(\sin \theta)\,d\theta\\
\end{align}$
In the second integral perform the change of variable $x=\tan\theta$,
$\begin{align}
L&=\frac{1}{6}\pi\ln^2 2-\frac{1}{3}\int_0^1\frac{\ln^2 x}{1+x^2}\,dx-\frac{2}{3}\ln 2\int_0^{\frac{\pi}{2}}\ln(\sin \theta)\,d\theta\\
\end{align}$
It is well known that,
$\displaystyle \int_0^1\frac{\ln^2 x}{1+x^2}\,dx=\dfrac{1}{16}\pi^3$
and,
$\displaystyle \int_0^{\frac{\pi}{2}}\ln(\sin \theta)\,d\theta=-\frac{1}{2}\pi\ln 2$
Therefore,
$\begin{align}
L&=\frac{1}{2}\pi\ln^2 2-\frac{1}{48}\pi^3
\end{align}$
Therefore,
$\begin{align}
K&=\frac{1}{2}\pi\ln^2 2
\end{align}$
Therefore,
$\boxed{\displaystyle J=\frac{1}{12}\pi^3+\pi\ln^2 2}$
$$ \int_{-\infty}^{\infty}\frac{\arctan(x)^2\log(1+x^2)}{x^2}=\int_{0}^{\infty}Const \frac{\log(1+x^2)^3}{x^2} $$
which can be evaluated by beta differentataion
– tired Feb 04 '17 at 20:44