So, my friend has challenged me to solve the following integral
$\displaystyle \tag*{} I=\int_0^\infty \frac{\arctan (x^2) \ln(1+x^4)}{x(x^8+x^4+1)} \mathrm dx$
I started by doing $x^2=t$, so
$\displaystyle \tag{1} I=\frac 12 \int_0^\infty \frac{\arctan (x) \ln(1+x^2)}{x(x^4+x^2+1)} \mathrm dx$
Now, I first tried to solve this generalized integral:
$\displaystyle \tag*{} \mathcal L(m,n,a) = \int_0^\infty \frac{\arctan(mx)\ln(1+n^2x^2)}{x(a^2+x^2)} \ \mathrm dx$
We have $\mathcal L(0,1,a)=0$ and $\mathcal L(1,0,a)=0$. We now differentiate $\mathcal L(m,n,a)$ w.r.t $m$ first and then w.r.t $n$. We get:
$\displaystyle \tag{2} \begin{align} \partial m \ \partial n \ \mathcal L(m,n,a) &= \int_0^\infty \frac{2nx^2}{(a^2+x^2)(1+m^2x^2)(1+n^2x^2)} \ \mathrm dx \\\\ &= \frac{\pi n}{(m+n)(am+1)(an+1)} \\\\ &= \frac{\pi}{2(am+1)(an+1)} , \ \ \text{via symmetry} \end{align}$
And now taking the double integeral gives $\displaystyle \tag{3} \mathcal L(1,1,a) = \int_0^1\int_0^1 \frac{\pi}{2(am+1)(an+1)} \ \mathrm dm \ \mathrm dn$ Using the elementary result: $\displaystyle \tag*{} \int_0^1 \frac{1}{ay+1} \ \mathrm dy = \frac{\log(a+1)}{a}$ We find the value of $(3)$ as $\displaystyle \tag*{} \mathcal L(1,1,a) = \frac{\pi \log^2(a+1)}{2a^2}$ Finally, we conclude that $\displaystyle \tag*{}\int_0^\infty \frac{\arctan(x)\ln(1+x^2)}{x(a^2+x^2)} \ \mathrm dx={\color{Red} { \frac{\pi \log^2(a+1)}{2a^2}}}:= {\color{Blue}{ f(a)}}$
Now by completing square and performing, we have:
$\displaystyle \tag*{} \begin{align}\frac{1}{x^4+x^2+1} &=\frac{1}{\left(x^2+\frac 12\right)^2+\frac 34 }\\ &= \frac{1}{\left(x^2+\frac 12 - \frac{i \sqrt 3}{2}\right)\left(x^2+\frac 12 + \frac{i \sqrt 3}{2}\right)} \\ &= \frac{2}{i \sqrt 3} \left(\frac{1}{\left(x^2+\frac 12 - \frac{i \sqrt 3}{2}\right)}-\frac{1}{\left(x^2+\frac 12 + \frac{i \sqrt 3}{2}\right)}\right)\end{align} $
Adding all the pieces together, we get
$\displaystyle \tag{4} I=\frac{1}{i \sqrt 3} \left(f\left(\sqrt{\frac{1-i\sqrt3}{2}}\right) - f\left(\sqrt{\frac{1+i\sqrt3}{2}}\right)\right)$
My question is to simplify $(4)$ (if all my steps are correct) and also is there any short ways (methods others than contour integration) to destroy this integral?
Thanks :).