Today, I used real methods to calculate an integral. The integral to be evaluated is as follows:
$$I = \int_{0}^{\infty} \frac{\arctan x \ln \left(1+x^2 \right)}{x\left(1+x^2\right)} \, dx.$$
Using the idea of parameter integration, let
$$I(b) = \int_{0}^{\infty} \frac{\arctan bx \ln \left(1+x^2 \right)}{x\left(1+x^2\right)} \, dx, \quad (b > 0).$$
Then,
\begin{align}
I'(b) &= \int_{0}^{\infty} \frac{\ln \left(1+x^2 \right)}{\left(1+x^2 \right) \left(1+b^2 x^2 \right)} \, dx \\
&= \frac{1}{1-b^2} \int_{0}^{\infty} \left[\frac{\ln \left(1+x^2\right)}{1+x^2} - \frac{b^2 \ln \left(1+x^2\right)}{1+b^2 x^2}\right] \, dx \\
&= \frac{1}{1-b^2} J - \frac{b^2}{1-b^2} K,
\end{align}
where
\begin{align}
J &= \int_{0}^{\infty} \frac{\ln \left(1+x^2\right)}{1+x^2} \, dx \quad \text{(let } x \rightarrow \tan x) \\
&= -2 \int_{0}^{\frac{\pi}{2}} \ln \cos x \, dx \quad \text{(let } x \rightarrow \frac{\pi}{2} - x) \\
&= -2 \int_{0}^{\frac{\pi}{2}} \ln \sin x \, dx \\
&= -\int_{0}^{\frac{\pi}{2}} \ln (\sin x \cos x) \, dx \quad \text{(average of the two expressions)} \\
&= -\int_{0}^{\frac{\pi}{2}} \ln \sin 2x \, dx \quad \text{(let } 2x \rightarrow x) + \int_{0}^{\frac{\pi}{2}} \ln 2 \, dx \\
&= \frac{\pi \ln 2}{2} - \frac{1}{2} \int_{0}^{\pi} \ln \sin x \, dx \\
&= \frac{\pi \ln 2}{2} - \frac{1}{2} \left( \int_{0}^{\frac{\pi}{2}} \ln \sin x \, dx + \int_{\frac{\pi}{2}}^{\pi} \ln \sin x \, dx \quad \text{(let } x \rightarrow \pi - x) \right) \\
&= \frac{\pi \ln 2}{2} - \int_{0}^{\frac{\pi}{2}} \ln \sin x \, dx \\
&= \pi \ln 2.
\end{align}
And,
$$
K = \int_{0}^{\infty} \frac{\ln \left(1+x^2\right)}{1+b^2 x^2} \, dx.
$$
For $K$, consider parameter integration, let
$$
K(a) = \int_{0}^{\infty} \frac{\ln \left(1+a^2x^2\right)}{1+b^2 x^2} \, dx, \quad (a > 0).
$$
Then,
\begin{align}
K'(a) &= \int_{0}^{\infty} \frac{2ax^2}{\left(1+a^2x^2\right)\left(1+b^2x^2\right)} \, dx \\
&= \frac{2a}{a^2 - b^2} \int_{0}^{\infty} \left( \frac{1}{1+b^2x^2} - \frac{1}{1+a^2x^2} \right) \, dx \\
&= \frac{2a}{a^2 - b^2} \left( \frac{\pi}{2b} - \frac{\pi}{2a} \right) \\
&= \frac{\pi}{b(a + b)}.
\end{align}
Thus, we have
$$
K(a) = \frac{\pi \ln (a + b)}{b} + C,
$$
where $C$ is the integration constant. From
\begin{align}
K(0) &= \int_{0}^{\infty} 0 \, dx \\
&= 0 = \frac{\pi \ln b}{b} + C,
\end{align}
we get
$$
C = -\frac{\pi \ln b}{b}.
$$
Therefore,
$$
\begin{align}
K(a) &= \frac{\pi \ln (a + b)}{b} - \frac{\pi \ln b}{b} \\
&= \frac{\pi}{b} \ln \left(1 + \frac{a}{b}\right).
\end{align}
$$
Or, we can write
$$
K(a, b) = \frac{\pi}{b} \ln \left(1 + \frac{a}{b}\right).
$$
It is easy to see that the integral $J$ is actually $K(1, 1) = \pi \ln 2$, so the integral $J$ can also be derived from the integral $K$.
The reason for calculating the integral $J$ is to obtain the by-product integrals $\int_{0}^{\frac{\pi}{2}} \ln \cos x \, dx$ and $\int_{0}^{\frac{\pi}{2}} \ln \sin x \, dx$.
From the above, the integral
$$
K = K(1) = \frac{\pi}{b} \ln \left(1 + \frac{1}{b}\right).
$$
Thus, $I'(b)$ is
\begin{align}
I'(b) &= \frac{1}{1 - b^2} J + \frac{b^2}{1 - b^2} K \\
&= \frac{\ln 2 - b \ln \left(1 + \frac{1}{b}\right)}{1 - b^2} \pi.
\end{align}
Therefore, the desired integral
$$
I = I(1) = \int_{0}^{1} I'(b) \, db + I(0).
$$
And,
$$
I(0) = \int_{0}^{\infty} 0 \, dx = 0.
$$
So, the desired integral
\begin{align}
I &= \int_{0}^{1} \frac{\ln 2 - b \ln \left(1 + \frac{1}{b}\right)}{1 - b^2} \pi \, db \\
&= \pi \int_{0}^{1} \frac{\ln 2 - b \ln (1 + b) + b \ln b}{1 - b^2} \, db \\
&= \pi \left[ \int_{0}^{1} \frac{\ln 2 - b \ln (1 + b)}{1 - b^2} \, db + \int_{0}^{1} \frac{b \ln b}{1 - b^2} \, db \right] \\
&= \pi (L + M),
\end{align}
where
\begin{align}
M &= \int_{0}^{1} \frac{b \ln b}{1 - b^2} \, db \\
&= -\frac{1}{2} \int_{0}^{1} \ln b \, d \ln \left(1 - b^2\right) \\
&= -\frac{1}{2} \ln b \ln \left(1 - b^2\right) \bigg|_{0}^{1} + \frac{1}{2} \int_{0}^{1} \frac{\ln \left(1 - b^2\right)}{b} \, db \\
&= \lim_{b \to 1} -\frac{1}{2} \ln b \ln \left(1 - b^2\right) + \lim_{b \to 0} \frac{1}{2} \ln b \ln \left(1 - b^2\right) - \frac{1}{2} \int_{0}^{1} \frac{1}{b} \sum_{n=1}^{\infty} \frac{b^{2n}}{n} \, db \\
&= -\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{1} b^{2n-1} \, db \\
&= -\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} \\
&= -\frac{\pi^2}{24}.
\end{align}
And,
\begin{align}
L &= \int_{0}^{1} \frac{\ln 2 - b \ln (1 + b)}{1 - b^2} \, db \\
&= \frac{1}{2} \int_{0}^{1} \left[ \ln 2 - b \ln (1 + b) \right] \, d \ln \left( \frac{1 + b}{1 - b} \right) \\
&= \frac{1}{2} \left[ \ln 2 - b \ln (1 + b) \right] \ln \left( \frac{1 + b}{1 - b} \right) \bigg|_{0}^{1} + \frac{1}{2} \int_{0}^{1} \ln \left( \frac{1 + b}{1 - b} \right) \left[ \ln (1 + b) + \frac{b}{1 + b} \right] \, db \\
&= \frac{1}{2} \left[ \int_{0}^{1} \ln^2 (1 + b) \, db + \int_{0}^{1} \frac{b \ln (1 + b)}{1 + b} \, db - \int_{0}^{1} \ln (1 - b) \ln (1 + b) \, db - \int_{0}^{1} \frac{b \ln (1 - b)}{1 + b} \, db \right] \\
&= \frac{1}{2} \left[ \int_{0}^{1} \ln^2 (1 + b) \, db + \int_{0}^{1} \ln (1 + b) \, db - \int_{0}^{1} \frac{\ln (1 + b)}{1 + b} \, db - \int_{0}^{1} \ln (1 - b) \ln (1 + b) \, db - \int_{0}^{1} \ln (1 - b) \, db + \int_{0}^{1} \frac{\ln (1 - b)}{1 + b} \, db \right] \\
&= \frac{1}{2} (A + B - C - D - E + F),
\end{align}
where
\begin{align}
A &= \int_{0}^{1} \ln^2 (1 + b) \, db \\
&= \int_{1}^{2} \ln^2 b \, db \\
&= b \ln^2 b \bigg|_{1}^{2} - 2 \int_{1}^{2} \ln b \, db \\
&= 2 \ln^2 2 - 4 \ln 2 + 2. \\
B &= \int_{0}^{1} \ln (1 + b) \, db \\
&= b \ln (1 + b) \bigg|_{0}^{1} - \int_{0}^{1} \frac{b}{1 + b} \, db \\
&= 2 \ln 2 - 1. \\
C &= \int_{0}^{1} \frac{\ln (1 + b)}{1 + b} \, db \\
&= \frac{1}{2} \ln^2 (1 + b) \bigg|_{0}^{1} \\
&= \frac{1}{2} \ln^2 2. \\
E &= \int_{0}^{1} \ln (1 - b) \, db \\
&= b \ln (1 - b) \bigg|_{0}^{1} - \int_{0}^{1} \frac{-b}{1 - b} \, db \\
&= -1.
\end{align}
And,
\begin{align}
D &= \int_{0}^{1} \ln (1 - b) \ln (1 + b) \, db \\
&= b \ln (1 - b) \ln (1 + b) \bigg|_{0}^{1} - \int_{0}^{1} b \left[ \frac{-\ln (1 + b)}{1 - b} + \frac{\ln (1 - b)}{1 + b} \right] \, db \\
&= b \ln (1 - b) \ln (1 + b) \bigg|_{0}^{1} - \int_{0}^{1} \left[ \ln (1 + b) - \frac{\ln (1 + b)}{1 - b} + \ln (1 - b) - \frac{\ln (1 - b)}{1 + b} \right] \, db \\
&= b \ln (1 - b) \ln (1 + b) \bigg|_{0}^{1} - B + \int_{0}^{1} \frac{\ln (1 + b)}{1 - b} \, db - E + F \\
&= b \ln (1 - b) \ln (1 + b) \bigg|_{0}^{1} - B - E + F - \int_{0}^{1} \ln (1 + b) \, d \ln (1 - b) \\
&= b \ln (1 - b) \ln (1 + b) \bigg|_{0}^{1} - B - E + F - \ln (1 + b) \ln (1 - b) \bigg|_{0}^{1} + \int_{0}^{1} \frac{\ln (1 - b)}{1 + b} \, db \\
&= (b - 1) \ln (1 - b) \ln (1 + b) \bigg|_{0}^{1} - B - E + 2F \\
&= 2F - 2 \ln 2 + 2.
\end{align}
Next, solve for $F$. Continue using the idea of parameter integration, let
$$
F(g) = \int_{0}^{1} \frac{\ln (1 - gb)}{1 + b} \, db.
$$
Then,
\begin{align}
F'(g) &= \int_{0}^{1} \frac{-b}{(1 - gb)(1 + b)} \, db \\
&= \frac{1}{1 + g} \int_{0}^{1} \left( \frac{1}{1 + b} - \frac{1}{1 - gb} \right) \, db \\
&= \frac{\ln 2}{1 + g} - \frac{\ln (1 - g)}{1 + g} + \frac{\ln (1 - g)}{g}.
\end{align}
Similarly, from $F(0) = 0$, we have
$$
F = F(1) = \int_{0}^{1} F'(g) \, dg.
$$
So,
\begin{align}
F &= \int_{0}^{1} \left[ \frac{\ln 2}{1 + g} - \frac{\ln (1 - g)}{1 + g} + \frac{\ln (1 - g)}{g} \right] \, dg \\
&= \ln 2 \int_{0}^{1} \frac{1}{1 + g} \, dg - \int_{0}^{1} \frac{\ln (1 - g)}{1 + g} \, dg + \int_{0}^{1} \frac{\ln (1 - g)}{g} \, dg \\
&= \ln^2 2 - \int_{0}^{1} \frac{\ln (1 - b)}{1 + b} \, db + G \\
&= \ln^2 2 - F + G,
\end{align}
where
\begin{align}
G &= \int_{0}^{1} \frac{\ln (1 - g)}{g} \, dg \\
&= -\int_{0}^{1} \frac{1}{g} \sum_{n=1}^{\infty} \frac{g^n}{n} \, dg \\
&= -\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{1} g^{n-1} \, dg \\
&= -\sum_{n=1}^{\infty} \frac{1}{n^2} \\
&= -\frac{\pi^2}{6}.
\end{align}
Therefore,
\begin{align}
F &= \frac{1}{2} \left( \ln^2 2 + G \right) \\
&= \frac{1}{2} \ln^2 2 - \frac{\pi^2}{12}. \\
D &= 2F - 2 \ln 2 - 2 \\
&= \ln^2 2 - \frac{\pi^2}{6} - 2 \ln 2 + 2. \\
L &= \frac{1}{2} (A + B - C - D - E + F) \\
&= \frac{1}{2} \ln^2 2 + \frac{\pi^2}{24}. \\
I &= \pi (L + M) = \frac{1}{2} \pi \ln^2 2.
\end{align}
Finally, the value of the desired integral is
\begin{align}
I &= \int_{0}^{\infty} \frac{\arctan x \ln \left(1 + x^2 \right)}{x \left(1 + x^2\right)} \, dx \\
&= \frac{\pi \ln^2 2}{2}.
\end{align}
Additionally, some by-products such as $D$, $F$, $G$, $L$, and $M$ were obtained.