Theorem. $(X_i)_{i\in\mathbb{N}}\text{ iid Uniform }\{0,1\}\iff X=(0.X_1X_2X_3...)_2\sim\text{ Uniform }[0,1].$
Proof:
($\implies$)
If random variables (r.v.s) $X_1,X_2,\ldots$ are i.i.d. uniformly distributed on the set $\{0,1\}$, then $X=(0.X_1X_2\ldots)_2$ is a r.v. uniformly distributed on the real interval $[0,1]$. To see this, note that for any $x=(0.x_1x_2\ldots)_2\in[0,1)$ (always taking, WLOG, the unique binary representation of $x$ that has infinitely many $0$s), we have the following:
$$\begin{align}\{X > x\} = & \{X_1>x_1\}\cup\\
&\{\{X_1=x_1\}\cap \{X_2>x_2\}\}\cup\\
&\{\{X_1=x_1\}\cap \{X_2=x_2\}\cap\{X_3>x_3\} \}\cup\\
&\ldots \end{align}$$
Now, $P(X_i >x_i) = \frac{1}{2}(1-x_i)$, so the probability of the above disjoint union is just
$$\begin{align}P(X>x) &= \frac{1}{2}(1-x_1) + \frac{1}{2^2}(1-x_2) + \frac{1}{2^3}(1-x_3)+\ldots\\
&= \sum_{i=1}^\infty \frac{1}{2^i} - \sum_{i=1}^\infty \frac{x_i}{2^i}\\
&= 1 - x\\
\therefore P(X\le x) &= x
\end{align}
$$
therefore $X$ is a r.v. uniformly distributed on the interval $[0,1]$.
$(\impliedby)$
If $X$ is a r.v. uniformly distributed on the interval $[0,1]$ and $X_i$ denotes its $i$th binary digit (following the same convention as above for unique representation), then the $X_i$ are iid Uniform on the set $\{0,1\}$. To see this, note that $$P\left(X_{i_1}=x_{i_1},X_{i_2}=x_{i_2},...,X_{i_k}=x_{i_k}\right)=P\left(X\in 0.*{x_{i_1}}*{x_{i_2}}*...*{x_{i_k}}*\right)$$ where $\ \ 0.*{x_{i_1}}*{x_{i_2}}*...*{x_{i_k}}*\ \ $ denotes the set of real numbers in the interval $[0,1]$ having the specified binary digits. For example,
$$\begin{align}0.1*&=[0.1000...,\ 0.1000...+0.0111...)=[0.1, 1)\\ \\
0.*x_3*&=0.00x_3*\ \cup\ 0.01x_3*\ \cup\ 0.10x_3*\ \cup\ 0.11x_3*\\ \\
&= [0.00x_3, 0.00x_3+0.001)\ \cup\ [0.01x_3, 0.01x_3+0.001)\\ \\
&\quad\ \cup\ [0.10x_3, 0.10x_3+0.001)\ \cup\ [0.11x_3, 0.11x_3+0.001),\\ \\
\end{align}$$
and in general
$$\begin{align}
\ 0.*{x_{i_1}}*{x_{i_2}}*...*{x_{i_k}}*&=\bigcup_{s_1s_2...s_k\in\{0,1\}^{i_k-k}}\left[0.s_1{x_{i_1}}s_2{x_{i_2}}...s_k{x_{i_k}},\ \ 0.s_1{x_{i_1}}s_2{x_{i_2}}...s_k{x_{i_k}}+2^{-{i_k}}\right).
\end{align}$$
That is, the general term $\ 0.*{x_{i_1}}*{x_{i_2}}*...*{x_{i_k}}*\ $ is a union of $2^{i_k-k}$ disjoint intervals, each having width $2^{-i_k}.$ (The binary string $s_1{x_{i_1}}s_2{x_{i_2}}...s_k{x_{i_k}}$ is $i_k$ digits long and contains $k$ $x$s, so $s_1s_2...s_k$ is a binary string of length $i_k-k$, of which kind there are $2^{i_k-k}$ altogether.) Therefore,
$$\begin{align}&P\left(X_{i_1}=x_{i_1},X_{i_2}=x_{i_2},...,X_{i_k}=x_{i_k}\right)\\ \\
&=P(X\in 0.*{x_{i_1}}*{x_{i_2}}*...*{x_{i_k}}*)\\ \\
&=P\left(X\in\bigcup_{s_1s_2...s_k\in\{0,1\}^{i_k-k}}\left[0.s_1{x_{i_1}}s_2{x_{i_2}}...s_k{x_{i_k}},\ \ 0.s_1{x_{i_1}}s_2{x_{i_2}}...s_k{x_{i_k}}+2^{-{i_k}}\right) \right)\\ \\
&=\sum_{s_1s_2...s_k\in\{0,1\}^{i_k-k}} P\left(X\in\left[0.s_1{x_{i_1}}s_2{x_{i_2}}...s_k{x_{i_k}},\ \ 0.s_1{x_{i_1}}s_2{x_{i_2}}...s_k{x_{i_k}}+2^{-{i_k}}\right) \right)\\ \\
&= 2^{i_k-k}\cdot 2^{-i_k}\\
&= 2^{-k}.
\end{align}$$
As a special case, $P(X_i=x_i) = 2^{-1}$, so we have mutual independence of the $X_i$:
$$P\left(X_{i_1}=x_{i_1},...,X_{i_k}=x_{i_k}\right) = 2^{-k}=\prod_{j=1..k}P\left(X_{i_j}=x_{i_j}\right);
$$
consequently, the $X_i$ are iid Uniform on the set $\{0,1\}.$
QED