Question: proof limit of $\frac{1}{(x^{2}-1)}$ = -1 using $\epsilon - \delta$ as $x_{0} \to 0$
Hi... I am stumped on an intro analysis problem.
so it is stated Show $lim \frac{1}{x^{2}-1}$ = -1 as $x_{0} \to 0$.
here is my work, and I can't quite simplify the $|f(x) - L | < \epsilon$ to get an expression for $\delta$.
|$\frac{1}{x^{2}-1} + 1| \leq |\frac{1}{(x+1)(x-1)} + 1 | \leq | \frac{1}{x-1} - \frac{1}{x+1} + 2| \leq \epsilon $ not sure if I should use partial fractions here.
I am not sure the neighborhood to select for $x_0$ , so I'm guessing $|x| < 1$
this choice yields $1 < \frac{1}{x+1} < \frac{1}{x} < \frac{1}{x-1} $
so the expression of $\epsilon$ can be written: $|\frac{1}{x-1} - \frac{1}{x+1} + 2 | < |\frac{2}{x-1} + 2 | $ this can be simplified to
$| x - 0 | < \frac{\epsilon}{2}(x-1)$ where given our choice of $x_{0}$ (x-1) $< 2$
so I chose $\delta = min( 1, \epsilon)$.
but I am not sure this work is any good, and am having trouble writing the proof.
sincerely thank you!
Here is the Proof
let $\delta = min\{\frac{1}{2},\frac{5\epsilon}{2} \}$
let $\delta = \frac{1}{2} \implies x^{2} < \frac{|x|}{2} <\frac{1}{4}$ where $|x| < \frac{1}{2}$
then $\frac{-5}{4} < x^{2} - 1 < \frac{-3}{4} \implies \frac{5}{4} < |x^{2}-1| < \frac{3}{4} \implies \frac{1}{x^{2}-1}<\frac{4}{5}$
then $\frac{x^{2}}{x^{2}-1} < \frac{4|x|}{2*5} < \frac{4*1}{4*5} = \frac{1}{5} < \epsilon$
where if $\delta = \frac{1}{2} \implies \frac{1}{2} < \frac{5\epsilon}{2} \implies \frac{1}{5}<\epsilon$
for $\delta = \frac{5\epsilon}{2} $ let $|x - 0| < \frac{5\epsilon}{2} $ and for $|\frac{x}{2}|<\frac{5 \epsilon}{4}$ then
$x^{2}<|\frac{x}{2}| \implies |\frac{x^{2}}{x^{2}-1}| \leq \frac{2|x|}{5}$
so $x^{2} < \frac{|x|}{2} < \frac{5\epsilon}{4}$ then $|\frac{x^{2}}{x^{2}-1}| < \frac{4|x|}{5} <\frac{4}{5}*\frac{5\epsilon}{4} = \epsilon$