So we know that $\large\sum_\limits{i=0}^t\dbinom{m}{i}\dbinom{n-m}{t-i}=\dbinom{n}{t}$ by a simple counting argument.
Now is there any bound on the quantity $\large\sum_\limits{i=0}^t(-1)^i\dbinom{m}{i}\dbinom{n-m}{t-i}$?
Can we show any non trivial upper bound on this quantity other than $\dbinom{n}{t}$?