$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
For the purpose of the example, I'll assume $\ds{\ell = 0,1,\ldots,j}$:
\begin{align}
&\sum_{\ell = 0}^{j}A^{\ell}{K - j \choose L - \ell}{j \choose \ell} =
\sum_{\ell = 0}^{j}A^{\ell}{j \choose \ell}\ \overbrace{%
\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{K - j} \over z^{L - \ell + 1}}
\,{\dd z \over 2\pi\ic}}^{\ds{K - j \choose L - \ell}}
\\[5mm] = &\
\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{K - j} \over z^{L + 1}}
\sum_{\ell = 0}^{j}{j \choose \ell}\pars{Az}^{\ell}\,{\dd z \over 2\pi\ic} =
\oint_{\verts{z}\ =\ 1}
{\pars{1 + z}^{K - j}\,\,\pars{1 + Az}^{\,j} \over z^{L + 1}}
\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\,\bbox[#ffe,15px,border:2px dotted navy]{\ds{\bracks{z^{L}}\bracks{\pars{1 + z}^{K - j}\,\,\pars{1 + Az}^{\, j}}}}
\end{align}
which agrees with the claimed OP solution.
CAS yields the cumbersome answer:
$$
A^{L}{j \choose L}\
{}_{2}\mrm{F}_{1}\pars{j - K,-L;j - L + 1;{1 \over A}}
$$