Let $I$ be the integral of interest given by
$$I=\int_0^\infty \frac{x}{1+x^3}\,dx \tag 1$$
We will proceed to evaluate $I$ using complex-plane analysis.
We begin by examining the closed contour integral $J$ given by
$$\begin{align}
J&=\oint_C \frac{z}{1+z^3}\,dz \\\\
&=\int_{C_1}\frac{z}{1+z^3}\,dz+\int_{C_2}\frac{z}{1+z^3}\,dz+\int_{C_3}\frac{z}{1+z^3}\,dz\tag 2
\end{align}$$
where $(i)$ $C_1$ is the real line segment from $(0,0)$ to $(R,0)$, (ii) $C_2$ is the circular arc, centered at the origin with radius $R$ from $(R,0)$ to $(R\cos(2\pi/3),R\sin(2\pi/3))$, and (iii) $C_3$ is the line segment from $(R\cos(2\pi/3),R\sin(2\pi/3))$ to $(0,0)$
Note that we can write $(2)$ as
$$J=\int_0^R \frac{x}{1+x^3}\,dx+\int_0^{2\pi/3}\frac{Re^{i\theta}}{1+R^3e^{i3\theta}}\,ie^{i\theta}\,d\theta+\int_R^0\frac{e^{i2\pi/3}t}{1+t^3}e^{i2\pi/3}\,dt \tag 3$$
Also note that as $R\to \infty$ the second integral on the right-hand side of $(3)$ goes to zero while using $(1)$ we have
$$\begin{align}
\lim_{R\to \infty}J&=\left(1-e^{i4\pi/3}\right)I\\\\
&=-2ie^{i2\pi/3}\sin(2\pi/3) \tag 4
\end{align}$$
Next, from the residue theorem, we have
$$\begin{align}
\lim_{R\to \infty}J&=2\pi i \text{Res}\left(\frac{z}{1+z^3},z=e^{i\pi/3}\right)\\\\
&=\frac13 e^{-i\pi/3} \tag 5
\end{align}$$
Setting the right-hand sides of $(4)$ and $(5)$ equal and solving for $I$ reveals
$$\bbox[5px,border:2px solid #C0A000]{I=\frac{2\pi}{3\sqrt 3}}$$