0

Find $ \int_0^\infty \frac{x}{x^3 +1} dx$

What cantor should I choose?

Mr. Proof
  • 1,702

1 Answers1

1

Contour integration isn't the best approach. It's better to take $x=\tan^{2/3}t$, so the integral is$$\int_0^{\pi/2}\frac23\tan^{1/3}tdt=\frac{\pi}{3}\csc\frac{2\pi}{3}=\frac{2\pi}{3\sqrt{3}}.$$

J.G.
  • 118,053
  • I can not understand how did you integrated the last part? – Mr. Proof Dec 06 '20 at 13:52
  • 1
    @MathGin Using $2\int_0^{\pi/2}\sin^{2a-1}t\cos^{2b-1}tdt=\operatorname{B}(a,,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$, together with $\Gamma(a)\Gamma(1-a)=\pi\csc\pi a$. – J.G. Dec 06 '20 at 14:11