I need to integrate below function; $$\int_{-\infty}^{\infty} \frac{\sin(pR)}{R}\frac{p}{k^2-p^2} dp$$ here $k,R$ are constants. Since this is an even function of $p$, I tried applying the residue theorem.
$$\int_{-\infty}^{\infty} \frac{e^{ipR}-e^{-ipR}}{2iR}\frac{p}{k^2-p^2} dp$$ Now taking $z=pR, dz=R dp$; $$\int \frac{e^{iz}-e^{-iz}}{2iR}\frac{z}{k^2R^2-z^2} dz$$
$$\frac{\pi i}{2i}\frac{1}{R}[{(\lim{z \rightarrow kR})} \ \frac{(e^{iz}-e^{-iz})z}{k^2R^2-z^2}(z-kR) +{(\lim{z \rightarrow -kR})} \frac{(e^{iz}-e^{-iz})z}{k^2R^2-z^2}(z+kR)]$$ This gives me zero as the answer. However, since this is an even function integration cannot be zero. Any small help on this highly appreciated.
\lim_{z\to kR}– joriki Jul 22 '15 at 15:26