Defining
$$\gamma_M:=\{z\in\Bbb C\;;\;z=Me^{it}\;,\;0\le t\le\pi\}\;,\;\;M\in (0,\infty),$$
and
$$f(z):=\frac{e^{iz}}{z(z^2+1)}\;,\;\;C_R:=[-R,-\epsilon]\cup\gamma_\epsilon\cup[\epsilon,R]\cup\gamma_R\;,\;\;0<\epsilon<<R$$
We get that, as the only pole of $\,f\,$ within the region limited by $\,C_R\,$ is $\,z=i\,$ , that
$$\oint\limits_{C_R}f(z)\,dz=2\pi i\,Res_{z=i}(f)$$
Now:
$$Res_{z=i}(f)=\lim_{z\to i}(z-i)f(z)=\frac{e^{i^2}}{i(2i)}=-\frac{e^{-1}}{2}$$
$$Res_{z=0}(f)=\lim_{z\to 0}zf(z)=\frac{e^0}{1}=1$$
So, using the corollary to the lemma in the first answer here, and taking into account that we integrate on the negative direction on $\,\gamma_\epsilon\,$ , we get:
$$\frac{\pi i}{e}=\int\limits_{C_R}f(z)\,dz=\int\limits_{-R}^{-\epsilon}f(x)dx+\int\limits_{\gamma_\epsilon}f(z)\,dz+\int\limits_\epsilon^Rf(x)\,dz+\int\limits_{\gamma_R}f(z)\,dz\xrightarrow[\stackrel{\epsilon\to\ 0}{R\to\infty}]{}$$
$$\xrightarrow[\stackrel{\epsilon\to\ 0}{R\to\infty}]{}\int\limits_{-\infty}^\infty f(x)\,dx-\pi i\Longrightarrow$$
$$\int\limits_{-\infty}^\infty\frac{e^{ix}}{x(x^2+1)}dx=\pi i\left(1-\frac{1}{e}\right)\iff$$
and comparing real and imaginary parts in both sides we get
$$\int\limits_{-\infty}^\infty\frac{\sin x}{x(x^2+1)}dx=\pi\frac{e-1}{e}$$
Note: You can either use Jordan's Lemma or directly evaluate by Cauchy's to get
$$\int\limits_{C_R}f(z)\,dz\xrightarrow[R\to\infty]{}0$$