Let $a\geq 0$ and $ b\geq 0$. Prove that $\lim_{n \to \infty} \sqrt[n]{a^n+b^n}=\max \{a,b\}$.
[Hint: Use the identity $(a^n -b^n)=(a-b)(\sum_{i=0}^{n-1}a^ib^{n-1-i})$]
I need some help! I cannot do it even with the hint... :(
Let $a\geq 0$ and $ b\geq 0$. Prove that $\lim_{n \to \infty} \sqrt[n]{a^n+b^n}=\max \{a,b\}$.
[Hint: Use the identity $(a^n -b^n)=(a-b)(\sum_{i=0}^{n-1}a^ib^{n-1-i})$]
I need some help! I cannot do it even with the hint... :(
Assume without loss of generality $a > b$. Then you get
$$\sqrt[n]{a^n+b^n} = \sqrt[n]{a^n\cdot(1 + \frac{b^n}{a^n})} = a\cdot \sqrt[n]{(1 + \frac{b^n}{a^n})},$$
now conclude the limit using that $(\frac{b}{a})^n$ tends to $0$ for $n\to \infty$.
Hint :suppose $a\geq b$, $n$ is odd $$a^{n}+b^{n}=(a+b)(a^{n-1}+a^{n-2}b^1+a^{n-3}b^2+...+b^{n-1})\\(a+b)(a^{n-1}+a^{n-2}a^1+a^{n-3}a^2+...+a^{n-1})\\\leq(a+a)(na^{n-1})=2na^n\\\sqrt[n]{a^{n}+b^{n}}\leq \sqrt[n]{2na^n}\rightarrow a $$