Evaluate $$\lim_{n \rightarrow\infty} \sqrt[n]{3^{n} +5^{n}}$$
Attempt:
The only sort of manipulation that has come to mind is: $$e^{\frac{1}{n}ln(e^{n\ln(3)} + e^{n\ln(5)})}$$
So what is the trick to successfully evaluate this?
Evaluate $$\lim_{n \rightarrow\infty} \sqrt[n]{3^{n} +5^{n}}$$
Attempt:
The only sort of manipulation that has come to mind is: $$e^{\frac{1}{n}ln(e^{n\ln(3)} + e^{n\ln(5)})}$$
So what is the trick to successfully evaluate this?
hint: There is a standard trick....: $5^n < 3^n+5^n < 2\cdot 5^n$, and in general if $0 < a < b$, then $ \displaystyle \lim_{n \to \infty} \sqrt[n]{a^n+b^n} = b$
With the well known limit of the exponential $\lim\limits_{n \rightarrow\infty} \frac 1 {e^{n}}=0 $
$$\lim_{n \rightarrow\infty} \sqrt[n]{3^{n} +5^{n}}=5\lim_{n \rightarrow\infty} \sqrt[n]{ \left(\frac 35\right)^{n} +1}=5\lim_{n \rightarrow\infty} \sqrt[n]{ \frac 1 {e^{n(\ln 5 -\ln 3)}} +1}=5(0+1)^0=5$$
By Bernoulli's inequality, if $x > 0$ and $n \ge 1$, $(1+x)^n \ge 1+nx$.
Therefore $(1+x/n)^n \ge 1+x$ so that $(1+x)^{1/n} \le 1+x/n $.
Therefore, if $0 < a < b$ then $\sqrt[n]{a^n+b^n} =b\sqrt[n]{1+(a/b)^n} \le b(1+\frac{(a/b)^n}{n}) = b+\frac{b(a/b)^n}{n} \lt b+\frac{b}{n} $ since $a/b < 1$ and $\sqrt[n]{a^n+b^n} =b\sqrt[n]{1+(a/b)^n} \gt b $.
Thererfore $b \lt \sqrt[n]{a^n+b^n} \lt b + \frac{b}{n} $ so that $\lim_{n \to \infty} \sqrt[n]{a^n+b^n} = b $.
\begin{align*} \dfrac{1}{n}\cdot\log\left(\left(\dfrac{3}{5}\right)^{n}+1\right)\rightarrow 0, \end{align*} so \begin{align*} \left(\left(\dfrac{3}{5}\right)^{n}+1\right)^{1/n}\rightarrow e^{0}=1, \end{align*} and hence \begin{align*} \sqrt[n]{3^{n}+5^{n}}=5\left(\left(\dfrac{3}{5}\right)^{n}+1\right)^{1/n}\rightarrow 5. \end{align*}
The correct maniplulation by exponential is
$$\sqrt[n]{3^{n} +5^{n}}=(3^{n} +5^{n})^\frac1n=e^{\frac{\log (3^n+5^n)}{n}}\to5$$
indeed
$$\frac{\log (3^n+5^n)}{n}=\frac{\log 5^n+\log \left(1+\left(\frac{3}{5}\right)^n\right)}{n}=\frac{n\log 5+\log \left(1+\left(\frac{3}{5}\right)^n\right)}{n}=$$ $$=\log 5+\frac{\log \left(1+\left(\frac{3}{5}\right)^n\right)}{n}\to \log5+0=\log 5$$