13

The error function is defined as

$$\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} \, dt.$$

We know that the Gaussian integral is

$$\int_{-\infty}^{\infty} e^{-x^2}\,dx=\sqrt{\pi}.$$

Because of the symmetry of the integrand it is also true, that

$$\int_{-\infty}^{0} e^{-x^2}\,dx=\int_{0}^{\infty} e^{-x^2}\,dx=\frac{\sqrt{\pi}}{2}.$$

From here and from the definition of definite integral we know two exact values of the $\operatorname{erf}$ function, these are $\operatorname{erf}(0)=0$ and $\operatorname{erf}(\infty)=1$.

Question. Is there an exact closed-form value of $\operatorname{erf}(z)$ for some $z\neq0,\infty\,$?

Because of $(3)$ and $(4)$ here, the question is equivalent to the following. Are there a closed-form expression for some $z\neq 0,\infty$ of the following confluent hypergeometric functions?

$${_1F_1}\left(\frac{1}{2};\frac{3}{2};-z^2\right),$$ $${_1F_1}\left(1;\frac{3}{2};z^2\right).$$

Or because of $(5)$ here with the lower incomplete gamma function, for some $z \neq 0,\infty$

$$ \gamma\left(\frac 12, z^2 \right).$$


More general, is there any $(a,b)$ nonzero and finite pair for that we have a closed-form of the following?

$$\int_a^b e^{-x^2} \, dx,$$

where $a<b$.

user153012
  • 12,890
  • 5
  • 42
  • 115

1 Answers1

2

Something you might find interesting is the Mellin transform of error function, which can possibly open the door for investigation into values. First we can take the Mellin transform of the error function's derivative: $$2\pi^{-\frac{1}{2}}\int\limits_{0}^{\infty}e^{-x^2}x^{s-1}\,dx =\pi^{-\frac{1}{2}}\int\limits_{0}^{\infty}e^{-x}x^{\frac{s}{2}-1}\,dx=\pi^{-\frac{1}{2}}\Gamma\left(\frac{s}{2}\right)$$ There's a Mellin transform identity which gives us: $$\int_{0}^{x}f\left(y\right)\,dy \leadsto -s^{-1}\int\limits_{0}^{\infty} f\left(x\right)x^{s}\,dx$$ So the mellin transform of $\operatorname{erf}\left(x\right)$ gives us: $$-s^{-1}\pi^{-\frac{1}{2}}\Gamma\left(\frac{s+1}{2}\right)$$ And to recover the error function: $$\operatorname{erf}\left(x\right) = -\frac{1}{2\pi^{\frac{3}{2}}i}\int_\limits{c-i\infty}^{c+i\infty}\frac{\Gamma\left(\frac{s+1}{2}\right)}{s}x^{-s}\,ds$$

Daniel K
  • 320